scholarly journals Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 879
Author(s):  
Elena E. Vaiman ◽  
Natalia A. Shnayder ◽  
Maxim A. Novitsky ◽  
Vera S. Dobrodeeva ◽  
Polina S. Goncharova ◽  
...  

(1) Introduction: Extrapyramidal disorders form the so-called extrapyramidal syndrome (EPS), which is characterized by the occurrence of motor disorders as a result of damage to the basal ganglia and the subcortical-thalamic connections. Often, this syndrome develops while taking medications, in particular antipsychotics (APs). (2) Purpose: To review studies of candidate genes encoding dopamine receptors as genetic predictors of development of AP-induced parkinsonism (AIP) and AP-induced tardive dyskinesia (AITD) in patients with schizophrenia. (3) Materials and Methods: A search was carried out for publications of PubMed, Web of Science, Springer, and e-Library databases by keywords and their combinations over the last 10 years. In addition, the review includes earlier publications of historical interest. Despite extensive searches of these commonly used databases and search terms, it cannot be ruled out that some publications were possibly missed. (4) Results: The review considers candidate genes encoding dopamine receptors involved in pharmacodynamics, including genes DRD1, DRD2, DRD3, and DRD4. We analyzed 18 genome-wide studies examining 37 genetic variations, including single nucleotide variants (SNVs)/polymorphisms of four candidate genes involved in the development of AIP and AITD in patients with schizophrenia. Among such a set of obtained results, only 14 positive associations were revealed: rs1799732 (141CIns/Del), rs1800497 (C/T), rs6275 (C/T), rs6275 (C/T) DRD2; rs167771 (G/A) DRD3 with AIP and rs4532 (A/G) DRD1, rs6277 (C/T), rs6275 (C/T), rs1800497 (C/T), rs1079597 (A/G), rs1799732 (141CIns/Del), rs1045280 (C/G) DRD2, rs6280 (C/T), rs905568 (C/G) DRD3 with AITD. However, at present, it should be recognized that there is no final or unique decision on the leading role of any particular SNVs/polymorphisms in the development of AIP and AITD. (5) Conclusion: Disclosure of genetic predictors of the development of AIP and AITD, as the most common neurological adverse drug reactions (ADRs) in the treatment of patients with psychiatric disorders, may provide a key to the development of a strategy for personalized prevention and treatment of the considered complication of AP therapy for schizophrenia in real clinical practice.

Author(s):  
E. E. Vaiman ◽  
N. A. Shnayder ◽  
N. G. Neznanov ◽  
R. F. Nasyrova

Antipsychotic-induced parkinsonism is an undesirable reaction from the extrapyramidal system that occurs against the background of taking antipsychotics (AP), more often in patients with schizophrenia. Antipsychotic-induced parkinsonism belongs to the group of secondary parkinsonism. Its prevalence in the world is about 36%. It is assumed that this undesirable AP reaction is genetically determined. In recent years, numerous associative genetic studies of predisposition to the development of antipsychotic-induced parkinsonism have been conducted. However, the research results are contradictory.Purpose. Review of the results of studies of genetic predictors of antipsychotic-induced parkinsonism in patients with schizophrenia.Materials and methods. We searched for full-text publications in Russian and English in the RSCI, PubMed, Web of Science, Springer databases using keywords and combined searches for words over the past decade.Results. The review considers candidate genes encoding proteins/enzymes involved in the pharmacodynamics and pharmacokinetics of AP. We analyzed 23 genome-wide studies examining 108 genetic variations, including SNV/polymorphisms of 26 candidate genes involved in the development of AIP in schizophrenic patients. Among such a set of obtained results, only 22 positive associations were revealed: rs1799732 (141CIns/Del), rs1800497 (C/T), rs6275 (C/T) DRD2; rs167771 (G/A) DRD3; VNTR*9R DAT1; rs4680 (G/A) СOMT; rs6311 (C/T) 5HTR2A; rs6318 (C/G), rs3813929 (С/Т), haplotype-997G, -759C, -697C и 68G HTR2C; rs2179652 (C/T), rs2746073 (T/A), rs4606 (C/G), rs1152746 (A/G), rs1819741 (С/Т), rs1933695 (G/A), haplotype rs1933695-G, rs2179652-C, rs4606-C, rs1819741-T и rs1152746-G, haplotype rs1933695-G, rs2179652-T, rs4606-G, rs1819741-C и rs1152746-A RGS2; haplotype TCCTC ADORA2A; rs4795390 (C/G) PPP1R1B; rs6265 (G/A) BDNF; rs12678719 (C/G) ZFPM2; rs938112 (C/A) LSMAP; rs2987902 (A/T) ABL1; HLA-B44; rs16947 (A/G), rs1135824 (A/G), rs3892097 (A/G), rs28371733 (A/G), rs5030867 (A/C), rs5030865 (A/C), rs1065852 (C/T), rs5030863 (C/G), rs5030862 (A/G), rs28371706 (C/T), rs28371725 (A/G), rs1080983 (A/G) CYP2D6. However, at the present time it should be recognized that there is no final or unique decision about the leading role of any particular SNV/polymorphism in the development of AIP.Conclusion. Disclosure of genetic predictors of AP-induced parkinsonism development may provide a key to the development of a strategy for personalized prevention and treatment of the neurological complication of AP-therapy of schizophrenia in real clinical practice.


2020 ◽  
Vol 10 (3) ◽  
pp. 10-26
Author(s):  
E. E. Vaiman ◽  
N. A. Shnayder ◽  
N. G. Neznanov ◽  
R. F. Nasyrova

Introduction. Drug-induced dyskinesia is an iatrogenic undesirable side reaction from the extrapyramidal system that occurs during the administration of drugs, most often antipsychotics in patients with schizophrenia. At the end of the 20 th century, studies were conducted on the search for candidate genes and the carriage of single nucleotide variants of antipsychotics-induced tardive dyskinesia. Purpose of the study – to analyze research results reflecting candidate genes and their single nucleotide variants associated with antipsychotic-induced tardive dyskinesia. Materials and methods. We searched for full-text publications in Russian and English in the eLIBRARY, PubMed, Web of Science, Springer databases using keywords (tardive dyskinesia, drug-induced tardive dyskinesia, antipsychotics, antipsychotics, typical antipsychotics, atypical antipsychotics, genes, polymorphisms) and combined searches for words over the past decade. Results. The lecture discusses candidate genes encoding proteins/enzymes involved in the pharmacodynamics and pharmacokinetics of antipsychotics Conclusion. Timely identification of individual genetic characteristics of the patient can contribute to the development of diagnostic test systems and in the future selection of the safest and most effective antipsychotic therapy.


2020 ◽  
Vol 16 (5) ◽  
pp. 852-860
Author(s):  
A. V. Savinova ◽  
M. M. Petrova ◽  
N. A. Shnayder ◽  
E. N. Bochanova ◽  
R. F. Nasyrova

Apixaban is oral anticoagulant, it is widely used in prevention of stroke in non-valvular atrial fibrillation and treatment of deep vein thrombosis and pulmonary embolism. Its main mechanism of action is through reversible inhibition of factor Xa. It specifically binds and inhibits both free and bound factor Xa which ultimately results in reduction in the levels of thrombin formation. Apixaban is mainly metabolized by CYP3A4 with minor contributions from CYP1A2, CYP2C8, CYP2C9, CYP2C19 and CYP2J2 isoenzymes. Some of the major metabolic pathways of apixaban include o-demethylation, hydroxylation, and sulfation, with o-demethylapixabansulphate being the major metabolite. The aim of this review is analysis of associated researches of single nucleotide variants (SNV) of CYP3A5 and SULT1A1 genes and search for new candidate genes reflecting effectiveness and safety of apixaban. The search for full-text publications in Russian and English languages containing key words “apixaban”, “pharmacokinetics”, “effectiveness”, “safety” was carried out amongst literature of the past twenty years with the use of eLibrary, PubMed, Web of Science, OMIM data bases. Pharmacokinetics and pharmacogenetics of apixaban are considered in this review. The hypothesis about CYP и SULT1A enzymes influence on apixaban metabolism was examined. To date, numerous SNVs of the CYP3A5 and SULT1A1 genes have been identified, but their potential influence on pharmacokinetics apixaban in clinical practice needs to be further studies. The role of SNVs of other genes encoding beta-oxidation enzymes of apixaban (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2J2) and transporter proteins (ABCB1, ABCG2) in its efficacy and safety are not well understood, and ABCB1 and ABCG2 genes may be potential candidate genes for studies of the drug safety.


2020 ◽  
Author(s):  
lijuan wei ◽  
Ruiying Liu ◽  
Wen Xu ◽  
Yan Zhu ◽  
Jinqi Ma ◽  
...  

Abstract Background Brassica napus (rapeseed) is an important oilseed crop and its leaves and stems can also be used as animal feed. Lignocellulose content is closely related to the nutritional quality and palatability of animal feed. However, quantitative trait loci (QTLs) associated with acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents in rapeseed stems have not yet been mapped. Results In this study, we used 494 B. napus accessions to perform genome-wide association studies (GWAS) of ADF and NDF contents. Ninety-two single-nucleotide polymorphisms (SNP) and 35 simple-sequence repeat (SSR) loci were significantly correlated with ADF and NDF contents, respectively, and six genetic loci associated with ADF and NDF contents were detected using both types of markers. We identified three candidate genes on chromosome A05 related to ADF content, including genes encoding chitinase-like protein 2 (CTL2) and two trichome birefringence-like 41 s (TBL41s). Seven genes on chromosomes A03 and A04 were related to NDF content, including genes encoding glycosyl hydrolase (GH), reversibly glycosylated polypeptide 1 (RGP), irregular xylem 12 (IRX12), trichome birefringence-like 34 (TBL34), galacturonosyltransferase 7 (GAUT7), cytokinesis defective 1 (CYT1), and LOB domain-containing protein 15 (LBD15). These candidate genes encode factors that likely participate in secondary cell wall formation and lignocellulose biosynthesis. Conclusions These findings lay the foundation for identifying genes related to forage quality traits and improving the efficiency of forage utilization in rapeseed, which will be beneficial for breeding new varieties for high-quality forage with low lignocellulose content.


2017 ◽  
Vol 7 (7) ◽  
pp. 2391-2403 ◽  
Author(s):  
Amanda S Lobell ◽  
Rachel R Kaspari ◽  
Yazmin L Serrano Negron ◽  
Susan T Harbison

Abstract Ovariole number has a direct role in the number of eggs produced by an insect, suggesting that it is a key morphological fitness trait. Many studies have documented the variability of ovariole number and its relationship to other fitness and life-history traits in natural populations of Drosophila. However, the genes contributing to this variability are largely unknown. Here, we conducted a genome-wide association study of ovariole number in a natural population of flies. Using mutations and RNAi-mediated knockdown, we confirmed the effects of 24 candidate genes on ovariole number, including a novel gene, anneboleyn (formerly CG32000), that impacts both ovariole morphology and numbers of offspring produced. We also identified pleiotropic genes between ovariole number traits and sleep and activity behavior. While few polymorphisms overlapped between sleep parameters and ovariole number, 39 candidate genes were nevertheless in common. We verified the effects of seven genes on both ovariole number and sleep: bin3, blot, CG42389, kirre, slim, VAChT, and zfh1. Linkage disequilibrium among the polymorphisms in these common genes was low, suggesting that these polymorphisms may evolve independently.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.


2021 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Nayoung Han ◽  
Jung Mi Oh ◽  
In-Wha Kim

For predicting phenotypes and executing precision medicine, combination analysis of single nucleotide variants (SNVs) genotyping with copy number variations (CNVs) is required. The aim of this study was to discover SNVs or common copy CNVs and examine the combined frequencies of SNVs and CNVs in pharmacogenes using the Korean genome and epidemiology study (KoGES), a consortium project. The genotypes (N = 72,299) and CNV data (N = 1000) were provided by the Korean National Institute of Health, Korea Centers for Disease Control and Prevention. The allele frequencies of SNVs, CNVs, and combined SNVs with CNVs were calculated and haplotype analysis was performed. CYP2D6 rs1065852 (c.100C>T, p.P34S) was the most common variant allele (48.23%). A total of 8454 haplotype blocks in 18 pharmacogenes were estimated. DMD ranked the highest in frequency for gene gain (64.52%), while TPMT ranked the highest in frequency for gene loss (51.80%). Copy number gain of CYP4F2 was observed in 22 subjects; 13 of those subjects were carriers with CYP4F2*3 gain. In the case of TPMT, approximately one-half of the participants (N = 308) had loss of the TPMT*1*1 diplotype. The frequencies of SNVs and CNVs in pharmacogenes were determined using the Korean cohort-based genome-wide association study.


Sign in / Sign up

Export Citation Format

Share Document