scholarly journals Simultaneous Measurement of Changes in Neutrophil Granulocyte Membrane Potential, Intracellular pH, and Cell Size by Multiparametric Flow Cytometry

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1504
Author(s):  
Alexander Elias Paul Stratmann ◽  
Lisa Wohlgemuth ◽  
Maike Elisabeth Erber ◽  
Stefan Bernhard ◽  
Stefan Hug ◽  
...  

Neutrophils provide rapid and efficient defense mechanisms against invading pathogens. Upon stimulation with proinflammatory mediators, including complement factors and bacterial peptides, neutrophils respond with cellular changes in their membrane potential, intracellular pH, and cellular size. This study provides an approach to quantify these changes simultaneously using multiparametric flow cytometry, thereby revealing a typical sequence of neutrophil activation consisting of depolarization, alkalization, and increase in cellular size. Additionally, the time resolution of the flow cytometric measurement is improved in order to allow changes that occur within seconds to be monitored, and thus to enhance the kinetic analysis of the neutrophil response. The method is appropriate for the reliable semiquantitative detection of small variations with respect to an increase, no change, and decrease in those parameters as demonstrated by the screening of various proinflammatory mediators. As a translational outlook, the findings are put into context in inflammatory conditions in vitro as well as in a clinically relevant whole blood model of endotoxemia. Taken together, the multiparametric analysis of neutrophil responsiveness regarding depolarization, alkalization, and changes in cellular size may contribute to a better understanding of neutrophils in health and disease, thus potentially yielding innovative mechanistic insights and possible novel diagnostic and/or prognostic approaches.

2019 ◽  
Vol 44 (6) ◽  
pp. 810-821
Author(s):  
Edibe Avci ◽  
Yeliz Z. Akkaya-Ulum ◽  
Digdem Yoyen-Ermis ◽  
Gunes Esendagli ◽  
Banu Balci-Peynircioglu

Abstract Background Neutrophil-mediated killing of pathogens is one of the most significant functions of the primary defense of the host. Neutrophil activity and migration play a key role in inflammatory conditions. To gain insights into the interactions between neutrophils and neutrophil migration-related disorders, a large number of sophisticated methods have been developed. The technical limitations of isolating highly purified neutrophil populations, minimizing both cell death and activation during the isolation process, and the short lifespan of neutrophils present challenges for studying specific functions of neutrophils in vitro. In this study, we aimed to evaluate a separation medium-based density gradient method to obtain highly purified neutrophil populations and combined this protocol with a model for studying neutrophil migration in-vitro. Materials and methods Human granulocytes were isolated using Lympholyte-poly solution. The purity and viability of isolated neutrophils were assessed by flow cytometry and morphological analysis. Neutrophil activation was confirmed by immunocytochemistry. Lastly, filter assay was performed to measure neutrophil chemotaxis. Results and discussion All validation experiments revealed that this method was capable of generating a highly purified neutrophil population for further functional in-vitro assays. Consequently, this study demonstrates a quick, cost effective, and easy-to-follow model, and may be a significant alternative to isolation methods that need extra subsequent steps such as flow cytometry-based cell sorting for reaching highly purified neutrophil population. Conclusion The suggested combination of methods for the isolation and cell migration analysis of human neutrophils is highly recommended to use for disease models involving neutrophil migration such as autoinflammatory disorders.


2010 ◽  
Vol 299 (1) ◽  
pp. G265-G274 ◽  
Author(s):  
Mingmin Chen ◽  
Anurag Singh ◽  
Fang Xiao ◽  
Ulrike Dringenberg ◽  
Jian Wang ◽  
...  

PEPT1 function in mouse intestine has not been assessed by means of electrophysiology and methods to assess its role in intracellular pH and fluid homeostasis. Therefore, the effects of the dipeptide glycilsarcosin (Gly-Sar) on jejunal fluid absorption and villous enterocyte intracellular pH (pHi) in vivo, as well as on enterocyte[14C]Gly-Sar uptake, short-circuit current ( Isc) response, and enterocyte pHi in vitro were determined in wild-type and PEPT1-deficient mice and in mice lacking PEPT1. Immunohistochemistry for PEPT1 failed to detect any protein in enterocyte apical membranes in Slc15a1−/− animals. Saturable Gly-Sar uptake in Slc15a1−/− everted sac preparations was no longer detectable. Similarly, Gly-Sar-induced jejunal Isc response in vitro was abolished. The dipeptide-induced increase in fluid absorption in vivo was also abolished in animals lacking PEPT1. Since PEPT1 acts as an acid loader in enterocytes, enterocyte pHi was measured in vivo by two-photon microscopy in SNARF-4-loaded villous enterocytes of exteriorized jejuni in anesthetized mice, as well as in BCECF-loaded enterocytes of microdissected jejunal villi. Gly-Sar-induced pHi decrease was no longer observed in the absence of PEPT1. A reversal of the proton gradient across the luminal membrane did not significantly diminish Gly-Sar-induced Isc response, whereas a depolarization of the apical membrane potential by high K+ or via Na+-K+-ATPase inhibition strongly diminished Gly-Sar-induced Isc responses. This study demonstrates for the first time that proton-coupled electrogenic dipeptide uptake in the native small intestine, mediated by PEPT1, relies on the negative apical membrane potential as the major driving force and contributes significantly to intestinal fluid transport.


Author(s):  
Uwe Schwanke ◽  
Laura Schrader ◽  
Rainer Moog

AbstractBackground: In peripheral blood, chemotaxis, phagocytosis, and oxidative burst of polymorphonuclear cells (PMNs) can be assessed by flow cytometry, whereas function tests, i.e., quality control in PMN concentrates designed for neutropenia therapy, are lacking.Methods: PMN concentrates (n=6) harvested from healthy donors who had been premedicated with granulocyte colony-stimulating factor (G-CSF) and dexamethasone were stored undiluted (control, C; n=6) and diluted 1:4 (D; n=6) with autologous plasma for 72h. Commercial flow cytometry function tests were performed to quantify changes in chemotaxis, phagocytosis, and oxidative burst of PMNs over time.Results: Median levels of phagocytosis and oxidative burst levelled at 86% (82–94) and 98% (83–100) in C on the day of apheresis, respectively, but deteriorated to 15% (0–24) and 0% within 72h; in D these parameters remained close to 90%. Median levels of chemotaxis were comparable in C (69%, 65–74) and D (74%, 70–84) at baseline. No migration was detected in C after 72h; however, D retained approximately 63% (13–76) migration capacity.Conclusion: Quality control in PMN concentrates is practical using flow cytometry and commercial test kits. While phagocytosis and oxidative burst may be maintained for 72h in vitro, chemotaxis of apheresed PMNs is already reduced on the day of apheresis.


1999 ◽  
Vol 19 (03) ◽  
pp. 134-138
Author(s):  
Gitta Kühnel ◽  
A. C. Matzdorff

SummaryWe studied the effect of GPIIb/IIIa-inhibitors on platelet activation with flow cytometry in vitro. Citrated whole blood was incubated with increasing concentrations of three different GPIIb/IIIa-inhibitors (c7E3, DMP728, XJ757), then thrombin or ADP were added and after 1 min the sample was fixed. Samples without c7E3 but with 0.1 U/ml thrombin had a decrease in platelet count. Samples with increasing concentrations of c7E3 had a lesser or no decrease in platelet count. The two other inhibitors (DMP 725, XJ757) gave similar results. GPIIb/IIIa-inhibitors prevent aggregate formation and more single platelets remain in the blood sample. The agonist-induced decrease in platelet count correlates closely with the concentration of the GPIIb/IIIa inhibitor and receptor occupancy. This correlation may be used as a simple measure for inhibitor activity in whole blood.


Author(s):  
А.А. Соколовская ◽  
Э.Д. Вирюс ◽  
В.В. Александрин ◽  
А.С. Роткина ◽  
К.А. Никифорова ◽  
...  

Цель исследования. Ишемические повреждения головного мозга, являются одной из наиболее частой причин инвалидности и смертности во всем мире. Недавно была установлена роль апоптоза тромбоцитов в патофизиологии инсульта, однако его механизмы до сих пор остаются невыясненными. Несмотря на различные экспериментальные модели, направленные на мониторинг апоптоза тромбоцитов, результаты, относительно изучения и выявления апоптоза тромбоцитов при ишемии головного мозга у крыс, весьма немногочисленны. Цель исследования - анализ апоптоза тромбоцитов с помощью метода проточной цитофлуориметрии на модели глобальной ишемии мозга у крыс. Методика. В экспериментах использовано 6 крыс-самцов Вистар в возрасте от 5 до 6 мес., разделенных на 2 группы: интактный контроль (К) и глобальная ишемия головного мозга. Модель глобальной ишемии головного мозга у крыс воспроизводилась путём билатеральной окклюзии общих сонных артерий на фоне гипотензии. Уровень системного артериального давления снижали посредством кровопотери до 40-45 мм рт. ст. Суспензию тромбоцитов крыс получали методом гельфильтрации с использованием сефарозы 2B. Для анализа экстернализации фосфатидилсерина (ФС) тромбоциты крыс инкубировали с Аннексином V-PE в связывающем буфере. Для оценки митохондриального мембранного потенциала (ММП) тромбоциты инкубировали с катионным красителем JC-1. После инкубации образцы немедленно анализировали на проточном цитофлуориметре FACSCalibur (Becton Dickinson, США). Результаты. Согласно полученным данным, экстернализация ФС на тромбоцитах крыс, перенесших инсульт, была значительно выше (53,45 ± 4,21%), чем в контрольной группе крыс (5,27 ± 2,40%). Данный эффект подтверждается выраженной деполяризацией митохондриальных мембран (DYm). После экспериментальной ишемии мозга почти 40% тромбоцитов было деполяризовано. Заключение. Использованный в работе подбор методов и маркеров обеспечивает понимание механизмов апоптоза тромбоцитов как в экспериментальных, так и в клинических условиях. Полученные данные позволяют сделать заключение, что апоптоз тромбоцитов является одним из факторов развития глобальной ишемии головного мозга у крыс. Результаты могут быть использованы для понимания механизмов, участвующих в развитии ишемического повреждения, что, в свою очередь, может быть использовано при разработке новых терапевтических стратегий. Aim. Stroke is one of the most common causes of disability and mortality worldwide. Multiple experimental models of stroke have focused on monitoring of platelet apoptosis. However, studies on and detection of platelet apoptosis in rats with ischemic stroke are very scarce. We investigated platelet apoptosis in rats with global brain ischemia using flow cytometry. Methods. Experiments were carried out on healthy, adult Wistar male rats weighing 300-350 g. The rats were divided into the following 2 groups: intact rats and rats with global brain ischemia. Global brain ischemia was induced by two-vessel (2-VO) carotid occlusion in combination with hypotension. Systemic blood pressure was reduced by 40-45 mm Hg by inducing haemorrhage. Platelets were isolated by gel filtration on Sepharose 2B. For evaluation of phosphatidylserine (PS) externalization, platelets were incubated with Annexin V-PE and analyzed on FACSCalibur (BD Biosciences). Mitochondrial membrane potential (DY) was measured during platelets apoptosis using JC-1, a mitochondrial membrane potential indicator. Platelets were analyzed by flow cytometry immediately after the incubation. Results. PS externalization on platelets was significantly greater after global brain ischemia (53.45 ± 4.21%) than in the control group (5.27 ± 2.40%). Pronounced depolarization of mitochondrial membrane potential (DYm) confirmed this finding. In the rat group with experimental brain ischemia, almost 40% (35.24 ± 5.21%) of platelets were depolarized. Conclusion. Our results provide insight into mechanisms involved in platelet apoptosis during ischemic stroke and can be used in further development of new therapeutic strategies.


2020 ◽  
Vol 21 (5) ◽  
pp. 497-506
Author(s):  
Mayck Silva Barbosa ◽  
Bruna da Silva Souza ◽  
Ana Clara Silva Sales ◽  
Jhoana D’arc Lopes de Sousa ◽  
Francisca Dayane Soares da Silva ◽  
...  

Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants’ defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.


2019 ◽  
Vol 16 (8) ◽  
pp. 723-731 ◽  
Author(s):  
Alexander Sturzu ◽  
Sumbla Sheikh ◽  
Hubert Kalbacher ◽  
Thomas Nägele ◽  
Christopher Weidenmaier ◽  
...  

Background: Curcumin has been of interest in the field of Alzheimer’s disease. Early studies on transgenic mice showed promising results in the reduction of amyloid plaques.However, curcumin is very poorly soluble in aqueous solutions and not easily accessible to coupling as it contains only phenolic groups as potential coupling sites. For these reasons only few imaging studies using curcumin bound as an ester were performed and curcumin is mainly used as nutritional supplement. Methods: In the present study we produced an aminoethyl ether derivative of curcumin using a nucleophilic substitution reaction. This is a small modification and should not impact the properties of curcumin while introducing an easily accessible reactive amino group. This novel compound could be used to couple curcumin to other molecules using the standard methods of peptide synthesis. We studied the aminoethyl-curcumin compound and a tripeptide carrying this aminoethyl-curcumin and the fluorescent dye fluorescein (FITC-curcumin) in vitro on cell culture using confocal laser scanning microscopy and flow cytometry. Then these two substances were tested ex vivo on brain sections prepared from transgenic mice depicting Alzheimer-like β-amyloid plaques. Results: In the in vitro CLSM microscopy and flow cytometry experiments we found dot-like unspecific uptake and only slight cytotoxicity correlating with this uptake. As these measurements were optimized for the use of fluorescein as dye we found that the curcumin at 488nm fluorescence excitation was not strong enough to use it as a fluorescence marker in these applications. In the ex vivo sections CLSM experiments both the aminoethyl-curcumin and the FITC-curcumin peptide bound specifically to β- amyloid plaques. Conclusion: In conclusion we successfully produced a novel curcumin derivative which could easily be coupled to other imaging or therapeutic molecules as a sensor for amyloid plaques.


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


Sign in / Sign up

Export Citation Format

Share Document