scholarly journals Can ECIS Biosensor Technology Be Used to Measure the Cellular Responses of Glioblastoma Stem Cells?

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 498
Author(s):  
Laverne Diana Robilliard ◽  
Jane Yu ◽  
Sung-Min Jun ◽  
Akshata Anchan ◽  
Graeme Finlay ◽  
...  

Glioblastoma is considered the most aggressive and lethal form of brain cancer. Glioblastoma tumours are complex, comprising a spectrum of oncogenically transformed cells displaying distinct phenotypes. These can be generated in culture and are called differentiated-glioblastoma cells and glioblastoma stem cells. These cells are phenotypically and functionally distinct, where the stem-like glioblastoma cells give rise to and perpetuate the tumour. Electric cell-substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method for the analysis of cellular behaviour, based on cellular adhesion. Therefore, we asked the question of whether ECIS was suitable for, and capable of measuring the adhesion of glioblastoma cells. The goal was to identify whether ECIS was capable of measuring glioblastoma cell adhesion, with a particular focus on the glioblastoma stem cells. We reveal that ECIS reliably measures adhesion of the differentiated glioblastoma cells on various array types. We also demonstrate the ability of ECIS to measure the migratory behaviour of differentiated glioblastoma cells onto ECIS electrodes post-ablation. Although the glioblastoma stem cells are adherent, ECIS is substantially less capable at reliably measuring their adhesion, compared with the differentiated counterparts. This means that ECIS has applicability for some glioblastoma cultures but much less utility for weakly adherent stem cell counterparts.

mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Matthew R. Pennington ◽  
Gerlinde R. Van de Walle

ABSTRACT Alphaherpesviruses, including those that commonly infect humans, such as HSV-1 and HSV-2, typically infect and cause cellular damage to epithelial cells at mucosal surfaces, leading to disease. The development of novel technologies to study the cellular responses to infection may allow a more complete understanding of virus replication and the creation of novel antiviral therapies. This study demonstrates the use of ECIS to study various aspects of herpesvirus biology, with a specific focus on changes in cellular morphology as a result of infection. We conclude that ECIS represents a valuable new tool with which to study alphaherpesvirus infections in real time and in an objective and reproducible manner. Electric cell-substrate impedance sensing (ECIS) measures changes in an electrical circuit formed in a culture dish. As cells grow over a gold electrode, they block the flow of electricity and this is read as an increase in electrical impedance in the circuit. ECIS has previously been used in a variety of applications to study cell growth, migration, and behavior in response to stimuli in real time and without the need for cellular labels. Here, we demonstrate that ECIS is also a valuable tool with which to study infection by alphaherpesviruses. To this end, we used ECIS to study the kinetics of cells infected with felid herpesvirus type 1 (FHV-1), a close relative of the human alphaherpesviruses herpes simplex virus 1 (HSV-1) and HSV-2, and compared the results to those obtained with conventional infectivity assays. First, we demonstrated that ECIS can easily distinguish between wells of cells infected with different amounts of FHV-1 and provides information about the cellular response to infection. Second, we found ECIS useful in identifying differences between the replication kinetics of recombinant DsRed Express2-labeled FHV-1, created via CRISPR/Cas9 genome engineering, and wild-type FHV-1. Finally, we demonstrated that ECIS can accurately determine the half-maximal effective concentration of antivirals. Collectively, our data show that ECIS, in conjunction with current methodologies, is a powerful tool that can be used to monitor viral growth and study the cellular response to alphaherpesvirus infection. IMPORTANCE Alphaherpesviruses, including those that commonly infect humans, such as HSV-1 and HSV-2, typically infect and cause cellular damage to epithelial cells at mucosal surfaces, leading to disease. The development of novel technologies to study the cellular responses to infection may allow a more complete understanding of virus replication and the creation of novel antiviral therapies. This study demonstrates the use of ECIS to study various aspects of herpesvirus biology, with a specific focus on changes in cellular morphology as a result of infection. We conclude that ECIS represents a valuable new tool with which to study alphaherpesvirus infections in real time and in an objective and reproducible manner.


2020 ◽  
Vol 21 (12) ◽  
pp. 4199
Author(s):  
Metka Novak ◽  
Miha Koprivnikar Krajnc ◽  
Barbara Hrastar ◽  
Barbara Breznik ◽  
Bernarda Majc ◽  
...  

The chemokine CCL5/RANTES is a versatile inflammatory mediator, which interacts with the receptor CCR5, promoting cancer cell interactions within the tumor microenvironment. Glioblastoma is a highly invasive tumor, in which CCL5 expression correlates with shorter patient survival. Using immunohistochemistry, we identified CCL5 and CCR5 in a series of glioblastoma samples and cells, including glioblastoma stem cells. CCL5 and CCR5 gene expression were significantly higher in a cohort of 38 glioblastoma samples, compared to low-grade glioma and non-cancerous tissues. The in vitro invasion of patients-derived primary glioblastoma cells and glioblastoma stem cells was dependent on CCL5-induced CCR5 signaling and is strongly inhibited by the small molecule CCR5 antagonist maraviroc. Invasion of these cells, which was enhanced when co-cultured with mesenchymal stem cells (MSCs), was inhibited by maraviroc, suggesting that MSCs release CCR5 ligands. In support of this model, we detected CCL5 and CCR5 in MSC monocultures and glioblastoma-associated MSC in tissue sections. We also found CCR5 expressing macrophages were in close proximity to glioblastoma cells. In conclusion, autocrine and paracrine cross-talk in glioblastoma and, in particular, glioblastoma stem cells with its stromal microenvironment, involves CCR5 and CCL5, contributing to glioblastoma invasion, suggesting the CCL5/CCR5 axis as a potential therapeutic target that can be targeted with repositioned drug maraviroc.


2020 ◽  
Vol 12 ◽  
pp. 175883592091530 ◽  
Author(s):  
Alja Zottel ◽  
Ivana Jovčevska ◽  
Neja Šamec ◽  
Jernej Mlakar ◽  
Jernej Šribar ◽  
...  

Background: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. Methods: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. Results: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. Conclusion: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.


Author(s):  
Takamasa Iwakura ◽  
Julian A Marschner ◽  
Zhi Bo Zhao ◽  
Monika Katarzyna Świderska ◽  
Hans-Joachim Anders

Abstract Electric cell-substrate impedance sensing (ECIS) is a quantitative, label-free, non-invasive analytical method allowing continuous monitoring of the behaviour of adherent cells by online recording of transcellular impedance. ECIS offers a wide range of practical applications to study cell proliferation, migration, differentiation, toxicity and monolayer barrier integrity. All of these applications are relevant for basic kidney research, e.g. on endothelial cells, tubular and glomerular epithelial cells. This review gives an overview on the fundamental principles of the ECIS technology. We name strengths and remaining hurdles for practical applications, present an ECIS array reuse protocol, and review its past, present and potential future contributions to preclinical kidney research.


2017 ◽  
Vol 22 (8) ◽  
pp. 1035-1043
Author(s):  
Harald Hundsberger ◽  
Anita Koppensteiner ◽  
Elisabeth Hofmann ◽  
Doris Ripper ◽  
Maren Pflüger ◽  
...  

Celiac disease (CD) is a chronic inflammatory condition caused by the ingestion of gliadin-containing food in genetically susceptible individuals. Undigested peptides of gliadin exert various effects, including increased intestinal permeability and inflammation in the small intestine. Although many therapeutic approaches are in development, a gluten-free diet is the only effective treatment for CD. Affecting at least 1% of the population in industrialized countries, it is important to generate therapeutic options against CD. Here, we describe the establishment of a high-throughput screening (HTS) platform based on AlphaLISA and electrical cell–substrate impedance sensing (ECIS) technology for the identification of anti-inflammatory and barrier-protective compounds in human enterocytes after pepsin-trypsin-digested gliadin (PT-gliadin) treatment. Our results show that the combination of these HTS technologies enables fast, reliable, simple, and label-free screening of IgY antibodies against PT-gliadin. Using this platform, we have identified a new chicken anti-PT-gliadin IgY antibody as a potential anti-CD agent.


Oncotarget ◽  
2016 ◽  
Vol 7 (37) ◽  
pp. 60245-60269 ◽  
Author(s):  
Mariia Patyka ◽  
Zeinab Sharifi ◽  
Kevin Petrecca ◽  
Jose Mansure ◽  
Bertrand Jean-Claude ◽  
...  

Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 668-679 ◽  
Author(s):  
A. Susloparova ◽  
D. Koppenhöfer ◽  
J. K. Y. Law ◽  
X. T. Vu ◽  
S. Ingebrandt

We introduce a novel technique of impedimetric sensing of cellular adhesion, which might have the potential to supplement the well-known technique of Electrical Cell-substrate Impedance Sensing (ECIS) in cell culture assays.


Sign in / Sign up

Export Citation Format

Share Document