scholarly journals Carbon Nanotube-Based Electrochemical Biosensor for Label-Free Protein Detection

Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 144 ◽  
Author(s):  
Jesslyn Janssen ◽  
Mike Lambeta ◽  
Paul White ◽  
Ahmad Byagowi

There is a growing need for biosensors that are capable of efficiently and rapidly quantifying protein biomarkers, both in the biological research and clinical setting. While accurate methods for protein quantification exist, the current assays involve sophisticated techniques, take long to administer and often require highly trained personnel for execution and analysis. Herein, we explore the development of a label-free biosensor for the detection and quantification of a standard protein. The developed biosensors comprise carbon nanotubes (CNTs), a specific antibody and cellulose filtration paper. The change in electrical resistance of the CNT-based biosensor system was used to sense a standard protein, bovine serum albumin (BSA) as a proof-of-concept. The developed biosensors were found to have a limit of detection of 2.89 ng/mL, which is comparable to the performance of the typical ELISA method for BSA quantification. Additionally, the newly developed method takes no longer than 10 min to perform, greatly reducing the time of analysis compared to the traditional ELISA technique. Overall, we present a versatile, affordable, simplified and rapid biosensor device capable of providing great benefit to both biological research and clinical diagnostics.

2007 ◽  
Vol 12 (5) ◽  
pp. 311-317 ◽  
Author(s):  
Vindhya Kunduru ◽  
Shalini Prasad

We demonstrate a technique to detect protein biomarkers contained in vulnerable coronary plaque using a platform-based microelectrode array (MEA). The detection scheme is based on the property of high specificity binding between antibody and antigen similar to most immunoassay techniques. Rapid clinical diagnosis can be achieved by detecting the amount of protein in blood by analyzing the protein's electrical signature. Polystyrene beads which act as transportation agents for the immobile proteins (antigen) are electrically aligned by application of homogenous electric fields. The principle of electrophoresis is used to produce calculated electrokinetic movement among the anti-C-reactive protein (CRP), or in other words antibody funtionalized polystyrene beads. The electrophoretic movement of antibody-functionalized polystyrene beads results in the formation of “Microbridges” between the two electrodes of interest which aid in the amplification of the antigen—antibody binding event. Sensitive electrical equipment is used for capturing the amplified signal from the “Microbridge” which essentially behaves as a conducting path between the two electrodes. The technique circumvents the disadvantages of conventional protein detection methods by being rapid, noninvasive, label-free, repeatable, and inexpensive. The same principle of detection can be applied for any receptor—ligand-based system because the technique is based only on the volume of the analyte of interest. Detection of the inflammatory coronary disease biomarker CRP is achieved at concentration levels spanning over the lower microgram/milliliter to higher order nanogram/milliliter ranges.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sarah Tonello ◽  
Francesca Stradolini ◽  
Giulia Abate ◽  
Daniela Uberti ◽  
Mauro Serpelloni ◽  
...  

AbstractProtein electrochemistry represents a powerful technique for investigating the function and structure of proteins. Currently available biochemical assays provide limited information related to the conformational state of proteins and high costs. This work provides novel insights into the electrochemical investigation of the metalloprotein p53 and its redox products using label-free direct electrochemistry and label-based antibody-specific approaches. First, the redox activities of different p53 redox products were qualitatively investigated on carbon-based electrodes. Then, focusing on the open p53 isoform (denatured p53), a quantitative analysis was performed, comparing the performances of different bulk and nanostructured materials (carbon and platinum). Overall, four different p53 products could be successfully discriminated, from wild type to denatured. Label-free analysis suggested a single electron exchange with electron transfer rate constants on the order of 1 s−1. Label-based analysis showed decreasing affinity of pAb240 towards denatured, oxidized and nitrated p53. Furthermore, platinum nanostructured electrodes showed the highest enhancement of the limit of detection in the quantitative analysis (100 ng/ml). Overall, the obtained results represent a first step towards the implementation of highly requested complex integrated devices for clinical practices, with the aim to go beyond simple protein quantification.


2012 ◽  
Vol 1414 ◽  
Author(s):  
Rahim Esfandyarpour ◽  
Hesaam Esfandyarpour ◽  
Mehdi Javanmard ◽  
James S. Harris ◽  
Ronald W. Davis

Abstract:Here we present the development of an array of electrical nano-biosensors in a microfluidic channel, called Nanoneedle biosensors. Then we present the proof of concept study for protein detection. A Nanoneedle biosensor is a real-time, label-free, direct electrical detection platform, which is capable of high sensitivity detection, measuring the change in ionic current and impedance modulation, due to the presence or reaction of biomolecules such as proteins or nucleic acids. We show that the sensors which have been fabricated and characterized for the protein detection. We have functionalized Nanoneedle biosensors with receptors specific to a target protein using physical adsorption for immobilization. We have used biotinylated bovine serum albumin as the receptor and sterptavidin as the target analyte. The detection of streptavidin binding to the receptor protein is also presented.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4936 ◽  
Author(s):  
Eliska Sedlackova ◽  
Zuzana Bytesnikova ◽  
Eliska Birgusova ◽  
Pavel Svec ◽  
Amir M. Ashrafi ◽  
...  

This work reports the use of modified reduced graphene oxide (rGO) as a platform for a label-free DNA-based electrochemical biosensor as a possible diagnostic tool for a DNA methylation assay. The biosensor sensitivity was enhanced by variously modified rGO. The rGO decorated with three nanoparticles (NPs)—gold (AuNPs), silver (AgNPs), and copper (CuNPs)—was implemented to increase the electrode surface area. Subsequently, the thiolated DNA probe (single-stranded DNA, ssDNA−1) was hybridized with the target DNA sequence (ssDNA-2). After the hybridization, the double-stranded DNA (dsDNA) was methylated by M.SssI methyltransferase (MTase) and then digested via a HpaII endonuclease specific site sequence of CpG (5′-CCGG-3′) islands. For monitoring the MTase activity, differential pulse voltammetry (DPV) was used, whereas the best results were obtained by rGO-AuNPs. This assay is rapid, cost-effective, sensitive, selective, highly specific, and displays a low limit of detection (LOD) of 0.06 U·mL−1. Lastly, this study was enriched with the real serum sample, where a 0.19 U·mL−1 LOD was achieved. Moreover, the developed biosensor offers excellent potential in future applications in clinical diagnostics, as this approach can be used in the design of other biosensors.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15019-e15019
Author(s):  
Qimin Quan ◽  
Joe Wilkinson ◽  
Joshua Ritchey ◽  
Alaina Kaiser ◽  
John Geanacopoulos ◽  
...  

e15019 Background: Liquid biopsy has evolved to be an important method complementary to tissue biopsy. It is not only non-invasive, but also has the potential to detect cancer in its earliest stages and monitor patients in remission. The integration of proteomics into liquid biopsy may transform the molecular diagnostics of cancer and accelerate basic and clinical oncology research. A recent study showed that adding just 8 protein biomarkers to a panel of circulating DNA biomarkers increased the diagnostic accuracy up to 98% sensitivity and 99% specificity. Proteomics also bridges the gaps of functional information lost due to post-transcriptional and post-translational modifications in the genomic approach. However, the proteogenomic approach normally requires the use of multiple different assay technologies and laboratory workflows, including mass spectrometry. Methods: NanoMosaic’s Tessie platform employs a densely integrated nanoneedle sensor array (thus named MosaicNeedles) which can be used to detect both nucleic acids and proteins in a single assay process with reduced workflow complexity, without the need for mass spectrometry. Results: The NanoMosaic platform is a label-free, digital, single molecule counting technology using nanoneedles. It achieves sub-pg/ml (̃fM) level sensitivity with 7 logs of dynamic range. An array of nanoneedles is densely integrated and manufactured with CMOS-compatible nanofabrication processes. Each nanoneedle is a single molecule biosensor that is functionalized with capture probes. The capture probe can be either an antibody for protein detection or an oligonucleotide with a specific target sequence to a DNA fragment, mRNA, or miRNA of interest. The scattering spectrum of each nanoneedle changes when an analyte binds to its surface. At low abundance, analytes that are captured can be quantitated by counting the presence or absence of a color change on each individual nanoneedle in a binary fashion. As an analyte concentration increases the binding events increase accordingly and achieve saturation. In this range, an analog analysis on the spectrum shift will be performed, thus providing a wider dynamic range, up to 7 logs. Ultrahigh level multiplex can be achieved by parallelizing each analyte specific sensing area without loss of sensitivity or dynamic range. A 10,000-plex study can be achieved with a total of 2.5 billion nanoneedles on a 50mm by 50mm consumable. In this consumable, a 2,000-plex proteome and 8,000 cell-free DNA fragments can be detected. Conclusions: In conclusion, a full proteogenomic quantification can be performed on the NanoMosaic platform in one reaction, with higher sensitivity, lower cost and higher throughput than is currently possible by traditional methods. In addition, the high-plexibility of the NanoMosaic platform allows the discovery of new biomarkers across the whole proteome without the need for mass spectrometry.


2021 ◽  
Vol 11 (15) ◽  
pp. 7087
Author(s):  
Dharmendra Neupane ◽  
Keith J. Stine

The development of sensitive and selective assays for protein biomarkers and other biological analytes is important for advancing the fields of clinical diagnostics and bioanalytical chemistry. The potential advantages of using aptamers in electrochemical sandwich assays are being increasingly recognized. These assays may include an aptamer as both capture and detection agent or a combination of an aptamer with a different partner such as an antibody, a lectin or a nanomaterial. The second binding partner in the sandwich structure is typically conjugated to a redox marker, a catalyst or an enzyme that can be used to generate the signal needed for electrochemical detection. Nanoparticles and other nanostructures can be used as the carriers for multiple molecules of the detection partner and thereby increase the signal. Nanostructured surfaces can be used to increase surface area and improve electron transfer. Sensitive electrochemical methods including impedance, differential and square-wave voltammetry and chronocoulometry have been used for electrochemical signal read-out. Impressive results have been achieved using electrochemical sandwich assays in terms of limit of detection and linear range for a growing range of analytes. The recent progress for this type of assay for proteins and other biomarkers is the subject of this review.


2021 ◽  
Vol 188 (3) ◽  
Author(s):  
Sofia Arshavsky-Graham ◽  
Anton Enders ◽  
Shanny Ackerman ◽  
Janina Bahnemann ◽  
Ester Segal

AbstractMicrofluidic integration of biosensors enables improved biosensing performance and sophisticated lab-on-a-chip platform design for numerous applications. While soft lithography and polydimethylsiloxane (PDMS)-based microfluidics are still considered the gold standard, 3D-printing has emerged as a promising fabrication alternative for microfluidic systems. Herein, a 3D-printed polyacrylate-based microfluidic platform is integrated for the first time with a label-free porous silicon (PSi)–based optical aptasensor via a facile bonding method. The latter utilizes a UV-curable adhesive as an intermediate layer, while preserving the delicate nanostructure of the porous regions within the microchannels. As a proof-of-concept, a generic model aptasensor for label-free detection of his-tagged proteins is constructed, characterized, and compared to non-microfluidic and PDMS-based microfluidic setups. Detection of the target protein is carried out by real-time monitoring reflectivity changes of the PSi, induced by the target binding to the immobilized aptamers within the porous nanostructure. The microfluidic integrated aptasensor has been successfully used for detection of a model target protein, in the range 0.25 to 18 μM, with a good selectivity and an improved limit of detection, when compared to a non-microfluidic biosensing platform (0.04 μM vs. 2.7 μM, respectively). Furthermore, a superior performance of the 3D-printed microfluidic aptasensor is obtained, compared to a conventional PDMS-based microfluidic platform with similar dimensions. Graphical abstract


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 336 ◽  
Author(s):  
Geert A. Van Raemdonck ◽  
Kara K. Osbak ◽  
Xaveer Van Ostade ◽  
Chris R. Kenyon

Background:Current syphilis diagnostic strategies are lacking a sensitive manner of directly detectingTreponema pallidumantigens. A diagnostic test that could directly detectT. pallidumantigens in individuals with syphilis would be of considerable clinical utility, especially for the diagnosis of reinfections and for post-treatment serological follow-up.Methods:In this study, 11 candidateT. pallidumbiomarker proteins were chosen according to their physiochemical characteristics,T. pallidumspecificity and predicted abundance. Thirty isotopically labelled proteotypic surrogate peptides (hPTPs) were synthesized and incorporated into a scheduled multiple reaction monitoring assay. Protein extracts from undepleted/unenriched plasma (N = 18) and urine (N = 4) samples from 18 individuals with syphilis in various clinical stages were tryptically digested, spiked with the hPTP mixture and analysed with a triple quadruple mass spectrometer.Results:No endogenous PTPs corresponding to the eleven candidate biomarkers were detected in any samples analysed. To estimate the Limit of Detection (LOD) of a comparably sensitive mass spectrometer (LTQ-Orbitrap), two dilution series of rabbit cultured purifiedT. pallidumwere prepared in PBS. Polyclonal anti-T. pallidumantibodies coupled to magnetic Dynabeads were used to enrich one sample series; no LOD improvement was found compared to the unenriched series. The estimated LOD of MS instruments is 300T. pallidum/ml in PBS.Conclusions:Biomarker protein detection likely failed due to the low (femtomoles/liter) predicted concentration ofT. pallidumproteins. Alternative sample preparation strategies may improve the detectability ofT. pallidumproteins in biofluids.


2011 ◽  
Vol 1346 ◽  
Author(s):  
Timothy O. Mertz ◽  
Krishna Vattipalli ◽  
Tom Barrett ◽  
John Carruthers ◽  
Shalini Prasad

ABSTRACTThis paper describes the development of nanomonitors, which are electrical immunoassays for detection of multiple protein biomarkers. These devices are hybrid sensors with micro-fabricated electrode arrays on a silicon substrate, and integrated nanoporous alumina membranes to provide protein confinement and signal amplification. The disease biomarkers C-reactive protein and Myeloperoxidase have been detected by the nanomonitors in ultra-low concentrations. Proteins were detected in pure samples, human serum, and patient blood samples. The detection accuracy and sensitivity of the nanomonitors in patient samples was comparable to the Enzyme Linked Immunosorbent Assay (ELISA) method of protein detection. Nanomonitors provide the additional benefits of being rapid, label-free, sensitive, and cost effective, providing improvements over traditional protein detection methods, and having potential applications in disease diagnosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aliya Bekmurzayeva ◽  
Zhannat Ashikbayeva ◽  
Zhuldyz Myrkhiyeva ◽  
Aigerim Nugmanova ◽  
Madina Shaimerdenova ◽  
...  

AbstractIncreased level of CD44 protein in serum is observed in several cancers and is associated with tumor burden and metastasis. Current clinically used detection methods of this protein are time-consuming and use labeled reagents for analysis. Therefore exploring new label-free and fast methods for its quantification including its detection in situ is of importance. This study reports the first optical fiber biosensor for CD44 protein detection, based on a spherical fiber optic tip device. The sensor is easily fabricated from an inexpensive material (single-mode fiber widely used in telecommunication) in a fast and robust manner through a CO2 laser splicer. The fabricated sensor responded to refractive index change with a sensitivity of 95.76 dB/RIU. The spherical tip was further functionalized with anti-CD44 antibodies to develop a biosensor and each step of functionalization was verified by an atomic force microscope. The biosensor detected a target of interest with an achieved limit of detection of 17 pM with only minor signal change to two control proteins. Most importantly, concentrations tested in this work are very broad and are within the clinically relevant concentration range. Moreover, the configuration of the proposed biosensor allows its potential incorporation into an in situ system for quantitative detection of this biomarker in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document