scholarly journals Impaired Expression of Tetraspanin 32 (TSPAN32) in Memory T Cells of Patients with Multiple Sclerosis

2020 ◽  
Vol 10 (1) ◽  
pp. 52 ◽  
Author(s):  
Maria Sofia Basile ◽  
Emanuela Mazzon ◽  
Katia Mangano ◽  
Manuela Pennisi ◽  
Maria Cristina Petralia ◽  
...  

Tetraspanins are a conserved family of proteins involved in a number of biological processes. We have previously shown that Tetraspanin-32 (TSPAN32) is significantly downregulated upon activation of T helper cells via anti-CD3/CD28 stimulation. On the other hand, TSPAN32 is marginally modulated in activated Treg cells. A role for TSPAN32 in controlling the development of autoimmune responses is consistent with our observation that encephalitogenic T cells from myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice exhibit significantly lower levels of TSPAN32 as compared to naïve T cells. In the present study, by making use of ex vivo and in silico analysis, we aimed to better characterize the pathophysiological and diagnostic/prognostic role of TSPAN32 in T cell immunity and in multiple sclerosis (MS). We first show that TSPAN32 is significantly downregulated in memory T cells as compared to naïve T cells, and that it is further diminished upon ex vivo restimulation. Accordingly, following antigenic stimulation, myelin-specific memory T cells from MS patients showed significantly lower expression of TSPAN32 as compared to memory T cells from healthy donors (HD). The expression levels of TSPAN32 was significantly downregulated in peripheral blood mononuclear cells (PBMCs) from drug-naïve MS patients as compared to HD, irrespective of the disease state. Finally, when comparing patients undergoing early relapses in comparison to patients with longer stable disease, moderate but significantly lower levels of TSPAN32 expression were observed in PBMCs from the former group. Our data suggest a role for TSPAN32 in the immune responses underlying the pathophysiology of MS and represent a proof-of-concept for additional studies aiming at dissecting the eventual contribution of TSPAN32 in other autoimmune diseases and its possible use of TSPAN32 as a diagnostic factor and therapeutic target.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3655-3655
Author(s):  
Lei Bao ◽  
Nargisa Niyazova-Brewer ◽  
Kimberly Dunham ◽  
Kenneth Kenneth ◽  
Qi Sun

Abstract Adoptive T cell immunotherapy (ATCI) with viral specific T cells, as exemplified by ATCI against Epstein-Bar virus (EBV) and Cytomegalovirus (CMV) with viral specific T cells generated from virus-experienced individuals, is efficacious against viral reactivation in immuno-compromised hosts. EBV-seronegative solid organ transplant recipients and CMV-seropositive stem cell transplant patients receiving CMV-seronegative grafts are at high risk of EBV-driven lymphoproliferation and CMV reactivation, respectively. However, due to the absence of virus-specific memory T cells, ex vivo techniques for generating virus-specific CD8+ CTL from virus-naive individuals remain to be developed for reproducibility and efficiency. To extend ATCI to the above patients, we are developing novel ex vivo systems to expand virus specific CD8+ CTL from seronegative individuals. We designed a two step stimulation for the naive T cells to develop into specific T cells. The first step, “de-naiviation”, involves non-specific but high-affinity stimulation of CD45RO/CD25/CD56/CD14 depleted peripheral blood mononuclear cells with anti-CD3 and -CD28 antibodies. The “de-naiviated” T cells were then antigen-specifically stimulated by antigen presenting cells expressing both EBV and CMV antigens. Peripheral blood mononuclear cells from an EBV/CMV seronegative individual were depleted for two rounds with micro-beads conjugated with antibodies against CD45RO, CD25, CD14 and CD56. The resultant cells were a homogenous population of cells mostly CD45RO−/CD45RA+/CD3+/CD25−, the phenotype for naïve T cells. After a period of expansion stimulated by a cocktail containing anti-CD3 (OKT3) and -CD28, 90% of the RO-T cells became RO+/RA−, the phenotype of memory T cells. Nearly all the CD4+ cells and most the CD8 cells became CD25+, suggesting recent activation. Then the “de-naiviated” T cells were stimulated with autologous EBV immortalized B lymphoblastoid cells transduced and expressing the CMV pp65 (CMVpp65) antigen. After three rounds of stimulation, the T cells were screened for specific production of interferon-gamma (IFNg) by ELISA. Clones were isolated from the primed T cells, and FACS analysis showed that the T cell clones produced IFNg in response to EBV BLCL expressing CMVpp65. These T cells also antigen-specificly expressed IL2 and GMCSF. Interestingly, while the cells were predominantly CD8+/CD3+, some of the cells were also positive for CD56, suggesting newly differentiated effector T cells. Work is ongoing to further characterize the T cell clones for antigen specificity, functionality and differentiation status. The novel approach we are developing has the potential to generate EBV and CMV specific CD8+ CTL from virus naive individuals for adoptive T cell immunotherapy against viral infections.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1001 ◽  
Author(s):  
Héctor Parra-Sánchez ◽  
Lorena Bustamante-Córdova ◽  
Mónica Reséndiz ◽  
Verónica Mata-Haro ◽  
Araceli Pinelli-Saavedra ◽  
...  

Conventional dendritic cells (cDCs) cannot be infected by porcine reproductive and respiratory syndrome virus (PRRSV) but respond to infection via cytokine production, indicating a possible role in initiation/regulation of the immune response against PRRSV. In this work, we evaluated the responses of splenic and blood cDCs, with DEC205+CADM1+CD172a+/− phenotype, as well as those of CD163+ cells against PRRSV and porcine epidemic diarrhea virus (PEDV). Both populations were incubated in the presence of PRRSV or PEDV with and without naïve CD3+ T cells, and cytokine responses were evaluated by qPCR and ELISA. Our results showed that cDCs, but not CD163+ cells, produced IL-12 in response to PRRSV. PEDV did not induce IL-12 production. Cocultures of cDCs and autologous naïve CD3+ cells resulted in decreased IL-12 production and low expression of IFN-γ transcripts in response to PRRSV. Interestingly, cDCs increased the proliferation of naïve T cells in the presence of PRRSV compared with that achieved with monocytes and peripheral blood mononuclear cells (PBMCs). Cocultures of CD163+ cells induced IL-10 and IL-4 expression in the presence of PRRSV and PEDV, respectively. In conclusion, cDCs can selectively produce IL-12 in response to PRRSV but poorly participate in the activation of naïve T cells.


2021 ◽  
Vol 172 (8) ◽  
pp. 198-204
Author(s):  
V. P. Timganova ◽  
◽  
L. S. Litvinova ◽  
K. A. Yurova ◽  
O. G. Khaziakhmatova ◽  
...  

2008 ◽  
Vol 76 (10) ◽  
pp. 4538-4545 ◽  
Author(s):  
William W. Kwok ◽  
Junbao Yang ◽  
Eddie James ◽  
John Bui ◽  
Laurie Huston ◽  
...  

ABSTRACT Cellular immune responses against protective antigen (PA) of Bacillus anthracis in subjects that received the anthrax vaccine adsorbed (AVA) vaccine were examined. Multiple CD4+ T-cell epitopes within PA were identified by using tetramer-guided epitope mapping. PA-reactive CD4+ T cells with a CD45RA− phenotype were also detected by direct ex vivo staining of peripheral blood mononuclear cells (PBMC) with PA-specific tetramers. Surprisingly, PA-specific T cells were also detected in PBMC of nonvaccinees after a single cycle of in vitro PA stimulation. However, PA-reactive CD4+ T cells in nonvaccinees occurred at lower frequencies than those in vaccinees. The majority of PA-reactive T cells from nonvaccinees were CD45RA+ and exhibited a Th0/Th1 cytokine profile. In contrast, phenotyping and cytokine profile analyses of PA-reactive CD4+ T cells from vaccinees indicated that vaccination leads to commitment of PA-reactive T cells to a Th2 lineage, including generation of PA-specific, pre-Th2 central memory T cells. These results demonstrate that the current AVA vaccine is effective in skewing the development of PA CD4+ T cells to the Th2 lineage. The data also demonstrated the feasibility of using class II tetramers to analyze CD4+ cell responses and lineage development after vaccination.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10220 ◽  
Author(s):  
Silvia Pérez-Pérez ◽  
María Inmaculada Domínguez-Mozo ◽  
Aitana Alonso-Gómez ◽  
Silvia Medina ◽  
Noelia Villarrubia ◽  
...  

Background Gut microbiota has been related to multiple sclerosis (MS) etiopathogenesis. Short-chain fatty acids (SCFA) are compounds derived from microbial metabolism that have a role in gut-brain axis. Objectives To analyse SCFA levels in plasma of MS patients and healthy donors (HD), and the possible link between these levels and both clinical data and immune cell populations. Methods Ninety-five MS patients and 54 HD were recruited. Patients were selected according to their score in the Expanded Disability Status Scale (EDSS) (49 EDSS ≤ 1.5, 46 EDSS ≥ 5.0). SCFA were studied in plasma samples by liquid chromatography-mass spectrometry. Peripheral blood mononuclear cells were studied by flow cytometry. Gender, age, treatments, EDSS and Multiple Sclerosis Severity Score (MSSS) were evaluated at the recruitment. Results Plasma acetate levels were higher in patients than in HD (p = 0.003). Patients with EDSS ≥ 5.0 had higher acetate levels than those with EDSS≤ 1.5 (p = 0.029), and HD (p = 2.97e–4). Acetate levels correlated with EDSS (r = 0.387; p = 1.08e–4) and MSSS (r = 0.265; p = 0.011). In untreated MS patients, acetate levels correlated inversely with CD4+ naïve T cells (r =  − 0.550, p = 0.001) and directly with CD8+ IL-17+ cells (r = 0.557; p = 0.001). Conclusions Plasma acetate levels are higher in MS patients than in HD. In MS there exists a correlation between plasma acetate levels, EDSS and increased IL-17+ T cells. Future studies will elucidate the role of SCFA in the disease.


2017 ◽  
Vol 63 (6) ◽  
pp. 539-545 ◽  
Author(s):  
M.B. Rayev ◽  
S.A. Zamorina ◽  
L.S. Litvinova ◽  
K.A. Yurova ◽  
O.G. Khaziakhmatova ◽  
...  

The effects of chorionic gonadotropin (hCG) on the expression of the hTERT gene in combination with the conversion of the phenotype of naive T-cells and T-cells of immune memory in vitro were studied. hCG inhibited expression of hTERT mRNA in naive T-cells (CD45RA+) and immune memory T cells (CD45RO+), causing a decrease in the replicative potential of the cells. The presence of hCG in the culture led to the conversion of the phenotype of T-lymphocytes. hCG reduced the number of proliferating T-cells of immune memory, estimated by phenotypic signs by differential gating. hCG (10 IU/ml and 100 IU/ml) inhibited expression of CD25 by the studied populations, but did not modulate expression of the CD71 proliferation marker. Thus, hCG inhibited the functional activity of naive T-cells and T-cells of immune memory, which, in the context of pregnancy, can contribute to the formation of immune tolerance to the semi-allogenic fetus.


2019 ◽  
Vol 20 (5) ◽  
pp. 1139 ◽  
Author(s):  
Tsui Mao ◽  
Carol Miao ◽  
Yi Liao ◽  
Ying Chen ◽  
Chia Yeh ◽  
...  

γδ-T-cells have attracted attention because of their potent cytotoxicity towards tumors. Most γδ-T-cells become activated via a major histocompatibility complex (MHC)-independent pathway by the interaction of their receptor, Natural Killer Group 2 Member D (NKG2D) with the tumor-specific NKG2D ligands, including MHC class I-related chain A/B (MICA/B) and UL16-binding proteins (ULBPs), to kill tumor cells. However, despite their potent antitumor effects, the treatment protocols specifically targeting ovarian tumors require further improvements. Ovarian cancer is one of the most lethal and challenging female malignancies worldwide because of delayed diagnoses and resistance to traditional chemotherapy. In this study, we successfully enriched and expanded γδ-T-cells up to ~78% from peripheral blood mononuclear cells (PBMCs) with mostly the Vγ9Vδ2-T-cell subtype in the circulation. We showed that expanded γδ-T-cells alone exerted significant cytotoxic activities towards specific epithelial-type OVCAR3 and HTB75 cells, whereas the combination of γδ-T cells and pamidronate (PAM), a kind of aminobisphosphonates (NBPs), showed significantly enhanced cytotoxic activities towards all types of ovarian cancer cells in vitro. Furthermore, in tumor xenografts of immunodeficient NSG mice, γδ-T-cells not only suppressed tumor growth but also completely eradicated preexisting tumors with an initial size of ~5 mm. Thus, we concluded that γδ-T-cells alone possess dramatic cytotoxic activities towards epithelial ovarian cancers both in vitro and in vivo. These results strongly support the potential of clinical immunotherapeutic application of γδ-T-cells to treat this serious female malignancy.


Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1167-1174 ◽  
Author(s):  
Francesco Annunziato ◽  
Grazia Galli ◽  
Filomena Nappi ◽  
Lorenzo Cosmi ◽  
Roberto Manetti ◽  
...  

Human T helper (Th) cells (Th1- or Th2-oriented memory T cells as well as Th1- or Th2-polarized naive T cells) were infected in vitro with an R5-tropic HIV-1 strain (BaL) and assessed for their profile of cytokine production, CCR5 receptor expression, and HIV-1 p24 antigen (p24 Ag) production. Higher p24 Ag production was found in CCR5-negative Th2-like memory T cells than in CCR5-positive Th1-like memory T cells. By contrast, p24 Ag production was higher in Th1-polarized activated naive T cells in the first 4 days after infection. However, p24 Ag production in Th1-polarized T cells became comparable or even lower than the production in Th2-polarized populations later in infection or when the cells were infected with HIV-1BaL after secondary stimulation. The higher levels of p24 Ag production by Th1-polarized naive T cells soon after infection reflected a higher virus entry, as assessed by the single round infection assay using the HIV–chloramphenicol acetyl transferase (HIV-CAT) R5-tropic virus that contains the envelope protein of HIV-1 YU2 strain. The limitation of viral spread in the Th1-polarized populations, despite the initial higher level of T-cell entry of R5-tropic strains, was due to the ability of Th1 cells to produce greater amounts of β-chemokines than Th2 cells. In fact, an inverse correlation was observed between Th1-polarized naive T cells and Th1-like memory-activated T cells in regards to p24 Ag production and the release of the following CCR5-binding chemokines: regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein–1 (MIP-1), and MIP-1β. Moreover, infection with the HIV-1BaL strain of Th1-polarized T cells in the presence of a mixture of anti-RANTES, anti–MIP-1, and anti–MIP-1β neutralizing antibodies resulted in a significant increase of HIV-1 expression. These findings suggest that Th1-type responses may favor CD4+ T-cell infection by R5-tropic HIV-1 strains, but HIV-1 spread in Th1 cells is limited by their ability to produce CCR5-binding chemokines.


1993 ◽  
Vol 5 (11) ◽  
pp. 1483-1487 ◽  
Author(s):  
Hilde Van de Veide ◽  
Katrien Lorré ◽  
Marleen Bakkus ◽  
Kris Thielemans ◽  
Jan L. Ceuppens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document