scholarly journals Caenorhabditis elegans Models to Investigate the Mechanisms Underlying Tau Toxicity in Tauopathies

2020 ◽  
Vol 10 (11) ◽  
pp. 838
Author(s):  
Carmina Natale ◽  
Maria Monica Barzago ◽  
Luisa Diomede

The understanding of the genetic, biochemical, and structural determinants underlying tau aggregation is pivotal in the elucidation of the pathogenic process driving tauopathies and the design of effective therapies. Relevant information on the molecular basis of human neurodegeneration in vivo can be obtained using the nematode Caenorhabditis elegans (C. elegans). To this end, two main approaches can be applied: the overexpression of genes/proteins leading to neuronal dysfunction and death, and studies in which proteins prone to misfolding are exogenously administered to induce a neurotoxic phenotype. Thanks to the easy generation of transgenic strains expressing human disease genes, C. elegans allows the identification of genes and/or proteins specifically associated with pathology and the specific disruptions of cellular processes involved in disease. Several transgenic strains expressing human wild-type or mutated tau have been developed and offer significant information concerning whether transgene expression regulates protein production and aggregation in soluble or insoluble form, onset of the disease, and the degenerative process. C. elegans is able to specifically react to the toxic assemblies of tau, thus developing a neurodegenerative phenotype that, even when exogenously administered, opens up the use of this assay to investigate in vivo the relationship between the tau sequence, its folding, and its proteotoxicity. These approaches can be employed to screen drugs and small molecules that can interact with the biogenesis and dynamics of formation of tau aggregates and to analyze their interactions with other cellular proteins.

2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Peter A. Kropp ◽  
Rosemary Bauer ◽  
Isabella Zafra ◽  
Carina Graham ◽  
Andy Golden

ABSTRACT Although nearly 10% of Americans suffer from a rare disease, clinical progress in individual rare diseases is severely compromised by lack of attention and research resources compared to common diseases. It is thus imperative to investigate these diseases at their most basic level to build a foundation and provide the opportunity for understanding their mechanisms and phenotypes, as well as potential treatments. One strategy for effectively and efficiently studying rare diseases is using genetically tractable organisms to model the disease and learn about the essential cellular processes affected. Beyond investigating dysfunctional cellular processes, modeling rare diseases in simple organisms presents the opportunity to screen for pharmacological or genetic factors capable of ameliorating disease phenotypes. Among the small model organisms that excel in rare disease modeling is the nematode Caenorhabditis elegans. With a staggering breadth of research tools, C. elegans provides an ideal system in which to study human disease. Molecular and cellular processes can be easily elucidated, assayed and altered in ways that can be directly translated to humans. When paired with other model organisms and collaborative efforts with clinicians, the power of these C. elegans studies cannot be overstated. This Review highlights studies that have used C. elegans in diverse ways to understand rare diseases and aid in the development of treatments. With continuing and advancing technologies, the capabilities of this small round worm will continue to yield meaningful and clinically relevant information for human health.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 317-330 ◽  
Author(s):  
O. Bossinger ◽  
E. Schierenberg

The pattern of autofluorescence in the two free-living namatodes Rhabditis dolichura and Caenorhabditis compared. In C. elegans, during later embryogenesis cells develop a typical bluish autofluorescence as illumination, while in Rh. dolichura a strong already present in the unfertilized egg. Using a new,


Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 2002 ◽  
Author(s):  
Cristina Moliner ◽  
Lillian Barros ◽  
Maria Dias ◽  
Víctor López ◽  
Elisa Langa ◽  
...  

Tagetes erecta L. has long been consumed for culinary and medicinal purposes in different countries. The aim of this study was to explore the potential benefits from two cultivars of T. erecta related to its polyphenolic profile as well as antioxidant and anti-aging properties. The phenolic composition was analyzed by LC-DAD-ESI/MSn. Folin-Ciocalteu, DPPH·, and FRAP assays were performed in order to evaluate reducing antiradical properties. The neuroprotective potential was evaluated using the enzymes acetylcholinesterase and monoamine oxidase. Caenorhabditis elegans was used as an in vivo model to assess extract toxicity, antioxidant activity, delayed aging, and reduced β-amyloid toxicity. Both extracts showed similar phenolic profiles and bioactivities. The main polyphenols found were laricitin and its glycosides. No acute toxicity was detected for extracts in the C. elegans model. T. erecta flower extracts showed promising antioxidant and neuroprotective properties in the different tested models. Hence, these results may add some information supporting the possibilities of using these plants as functional foods and/or as nutraceutical ingredients.


2005 ◽  
Vol 73 (11) ◽  
pp. 7236-7242 ◽  
Author(s):  
Creg Darby ◽  
Sandya L. Ananth ◽  
Li Tan ◽  
B. Joseph Hinnebusch

ABSTRACT Yersinia pestis, the cause of bubonic plague, blocks feeding by its vector, the flea. Recent evidence indicates that blockage is mediated by an in vivo biofilm. Y. pestis and the closely related Yersinia pseudotuberculosis also make biofilms on the cuticle of the nematode Caenorhabditis elegans, which block this laboratory animal's feeding. Random screening of Y. pseudotuberculosis transposon insertion mutants with a C. elegans biofilm assay identified gmhA as a gene required for normal biofilms. gmhA encodes phosphoheptose isomerase, an enzyme required for synthesis of heptose, a conserved component of lipopolysaccharide and lipooligosaccharide. A Y. pestis gmhA mutant was constructed and was severely defective for C. elegans biofilm formation and for flea blockage but only moderately defective in an in vitro biofilm assay. These results validate use of the C. elegans biofilm system to identify genes and pathways involved in Y. pestis flea blockage.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 811
Author(s):  
Cristina Moliner ◽  
Víctor López ◽  
Lillian Barros ◽  
Maria Inês Dias ◽  
Isabel C. F. R. Ferreira ◽  
...  

Rosmarinus officinalis L., commonly known as rosemary, has been largely studied for its wide use as food ingredient and medicinal plant; less attention has been given to its edible flowers, being necessary to evaluate their potential as functional foods or nutraceuticals. To achieve that, the phenolic profile of the ethanolic extract of R. officinalis flowers was determined using LC-DAD-ESI/MSn and then its antioxidant and anti-ageing potential was studied through in vitro and in vivo assays using Caenorhabditis elegans. The phenolic content was 14.3 ± 0.1 mg/g extract, trans rosmarinic acid being the predominant compound in the extract, which also exhibited a strong antioxidant capacity in vitro and increased the survival rate of C. elegans exposed to lethal oxidative stress. Moreover, R. officinalis flowers extended C. elegans lifespan up to 18%. Therefore, these findings support the potential use of R. officinalis flowers as ingredients to develop products with pharmaceutical and/or nutraceutical potential.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marcello Germoglio ◽  
Anna Valenti ◽  
Ines Gallo ◽  
Chiara Forenza ◽  
Pamela Santonicola ◽  
...  

AbstractFanconi Anemia is a rare genetic disease associated with DNA repair defects, congenital abnormalities and infertility. Most of FA pathway is evolutionary conserved, allowing dissection and mechanistic studies in simpler model systems such as Caenorhabditis elegans. In the present study, we employed C. elegans to better understand the role of FA group D2 (FANCD2) protein in vivo, a key player in promoting genome stability. We report that localization of FCD-2/FANCD2 is dynamic during meiotic prophase I and requires its heterodimeric partner FNCI-1/FANCI. Strikingly, we found that FCD-2 recruitment depends on SPO-11-induced double-strand breaks (DSBs) but not RAD-51-mediated strand invasion. Furthermore, exposure to DNA damage-inducing agents boosts FCD-2 recruitment on the chromatin. Finally, analysis of genetic interaction between FCD-2 and BRC-1 (the C. elegans orthologue of mammalian BRCA1) supports a role for these proteins in different DSB repair pathways. Collectively, we showed a direct involvement of FCD-2 at DSBs and speculate on its function in driving meiotic DNA repair.


2018 ◽  
Vol 293 (43) ◽  
pp. 16912-16922 ◽  
Author(s):  
Shanqing Zheng ◽  
Hilton Chiu ◽  
Jeffrey Boudreau ◽  
Tony Papanicolaou ◽  
William Bendena ◽  
...  

The human genome encodes 10 insulin-like genes, whereas the Caenorhabditis elegans genome remarkably encodes 40 insulin-like genes. Knockout strategies to determine the roles of all the insulin/insulin-like peptide ligands (INS) in C. elegans has been challenging due to functional redundancy. Here, we individually overexpressed each of the 40 ins genes pan-neuronally, and monitored multiple phenotypes including: L1 arrest life span, neuroblast divisions under L1 arrest, dauer formation, and fat accumulation, as readouts to characterize the functions of each INS in vivo. Of the 40 INS peptides, we found functions for 35 INS peptides and functionally categorized each as agonists, antagonists, or of pleiotropic function. In particular, we found that 9 of 16 agonistic INS peptides shortened L1 arrest life span and promoted neuroblast divisions during L1 arrest. Our study revealed that a subset of β-class INS peptides that contain a distinct F peptide sequence are agonists. Our work is the first to categorize the structures of INS peptides and relate these structures to the functions of all 40 INS peptides in vivo. Our findings will promote the study of insulin function on development, metabolism, and aging-related diseases.


Author(s):  
Ramiro Lorenzo ◽  
Michiho Onizuka ◽  
Matthieu Defrance ◽  
Patrick Laurent

Abstract Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.


2009 ◽  
Vol 8 (11) ◽  
pp. 1750-1758 ◽  
Author(s):  
Read Pukkila-Worley ◽  
Anton Y. Peleg ◽  
Emmanouil Tampakakis ◽  
Eleftherios Mylonakis

ABSTRACT Candida albicans colonizes the human gastrointestinal tract and can cause life-threatening systemic infection in susceptible hosts. We study here C. albicans virulence determinants using the nematode Caenorhabditis elegans in a pathogenesis system that models candidiasis. The yeast form of C. albicans is ingested into the C. elegans digestive tract. In liquid media, the yeast cells then undergo morphological change to form hyphae, which results in aggressive tissue destruction and death of the nematode. Several lines of evidence demonstrate that hyphal formation is critical for C. albicans pathogenesis in C. elegans. First, two yeast species unable to form hyphae (Debaryomyces hansenii and Candida lusitaniae) were less virulent than C. albicans in the C. elegans assay. Second, three C. albicans mutant strains compromised in their ability to form hyphae (efg1Δ/efg1Δ, flo8Δ/flo8Δ, and cph1Δ/cph1Δ efg1Δ/efg1Δ) were dramatically attenuated for virulence. Third, the conditional tet-NRG1 strain, which enables the external manipulation of morphogenesis in vivo, was more virulent toward C. elegans when the assay was conducted under conditions that permit hyphal growth. Finally, we demonstrate the utility of the C. elegans assay in a screen for C. albicans virulence determinants, which identified several genes important for both hyphal formation in vivo and the killing of C. elegans, including the recently described CAS5 and ADA2 genes. These studies in a C. elegans-C. albicans infection model provide insights into the virulence mechanisms of an important human pathogen.


Sign in / Sign up

Export Citation Format

Share Document