scholarly journals Variations of Brain Functional Connectivity in Alcohol-Preferring and Non-Preferring Rats with Consecutive Alcohol Training or Acute Alcohol Administration

2021 ◽  
Vol 11 (11) ◽  
pp. 1474
Author(s):  
Yue Liu ◽  
Binbin Nie ◽  
Taotao Liu ◽  
Ning Zheng ◽  
Zeyuan Liu ◽  
...  

Alcohol addiction is regarded as a series of dynamic changes to neural circuitries. A comparison of the global network during different stages of alcohol addiction could provide an efficient way to understand the neurobiological basis of addiction. Two animal models (P-rats screened from an alcohol preference family, and NP-rats screened from an alcohol non-preference family) were trained for alcohol preference with a two-bottle free choice method for 4 weeks. To examine the changes in the neural response to alcohol during the development of alcohol preference and acute stimulation, different trials were studied with resting-state fMRI methods during different periods of alcohol preference. The correlation coefficients of 28 regions in the whole brain were calculated, and the results were compared for alcohol preference related to the genetic background/training association. The variety of coherence patterns was highly related to the state and development of alcohol preference. We observed significant special brain connectivity changes during alcohol preference in P-rats. The comparison between the P- and NP-rats highlighted the role of genetic background in alcohol preference. The results of this study support the alterations of the neural network connection during the formation of alcohol preference and confirm that alcohol preference is highly related to the genetic background. This study could provide an effective approach for understanding the neurobiological basis of alcohol addiction.

Author(s):  
Zhen-Zhen Ma ◽  
Jia-Jia Wu ◽  
Xu-Yun Hua ◽  
Mou-Xiong Zheng ◽  
Xiang-Xin Xing ◽  
...  

2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2017 ◽  
Vol 1 (2) ◽  
pp. 69-99 ◽  
Author(s):  
William Hedley Thompson ◽  
Per Brantefors ◽  
Peter Fransson

Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i) to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python package Teneto.


Nature ◽  
1988 ◽  
Vol 331 (6151) ◽  
pp. 3-3
Author(s):  
Steven Dickman

2016 ◽  
Vol 11 ◽  
pp. 302-315 ◽  
Author(s):  
Tingting Xu ◽  
Kathryn R. Cullen ◽  
Bryon Mueller ◽  
Mindy W. Schreiner ◽  
Kelvin O. Lim ◽  
...  

Neuroscience ◽  
2018 ◽  
Vol 382 ◽  
pp. 80-92 ◽  
Author(s):  
Arkan Al-Zubaidi ◽  
Marcus Heldmann ◽  
Alfred Mertins ◽  
Kamila Jauch-Chara ◽  
Thomas F. Münte

BMJ Open ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. e022375 ◽  
Author(s):  
Marcel Schulze ◽  
Peter Sörös ◽  
Wolfgang Vogel ◽  
Thomas F Münte ◽  
Helge H O Müller ◽  
...  

IntroductionThe Roux-en-Y gastric bypass (RYGB) is one of the most widely used techniques for bariatric surgery. After RYGB, weight loss up to 50%–70% of excess body weight, improvement of insulin-resistance, changes in food preferences and improvements in cognitive performance have been reported. This protocol describes a longitudinal study of the neural correlates associated with food-processing and cognitive performance in patients with morbid obesity before and after RYGB relative to lean controls.Methods and analysisThis study is a pre–post case–control experiment. Using functional MRI, the neural responses to food stimuli and a working memory task will be compared between 25 patients with obesity, pre and post RYGB, and a matched, lean control group. Resting state fMRI will be measured to investigate functional brain connectivity. Baseline measurements for both groups will take place 4 weeks prior to RYGB and 12 months after RYGB. The effects of RYGB on peptide tyrosine tyrosine and glucagon-like polypeptide-1 will also be determined.Ethics and disseminationThe project has received ethical approval by the local medical ethics committee of the Carl-von-Ossietzky University of Oldenburg, Germany (registration: 2017-073). Results will be published in a peer-reviewed journal as original research and on international conferences.Trial registration numberDRKS00012495; Pre-results.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S114-S114
Author(s):  
Yulia Zaytseva ◽  
Eva Kozakova ◽  
Pavel Mohr ◽  
Filip Spaniel ◽  
Aaron Mishara

Abstract Background The self-disturbances (SDs) concept is considered to be part of the Schneider’s first rank symptoms, i.e., thought-withdrawal, thought-insertion, thought-broadcasting, somatic-passivity experiences, mental/motor automatisms, disrupted unitary self-experience (Mishara et al., 2014). SDs were originally described by W. Mayer-Gross (1920), who observed them in psychotic patients. Methods We classified Mayer-Gross’ findings on SDs into the following categories: experience is new/compelling (aberrant salience), reduced access/importance of autobiographical past, cognitions/emotions occur independently from self’s volition, foreign agents have power over self and developed an SDs scale based on these categories and cognitive domains (perception, motor, speech, thinking etc.). Scale is applied as a measure of the frequency of the experiences. In our current study on phenomenology and neurobiology of psychotic symptoms, we administered the scale to a study group of patients with schizophrenia (N=84) and healthy volunteers (N=170). Further, the resting state fMRI was performed and the group was divided into two subgroups with (N=13) and without self-disturbances (N=10) and in healthy individuals (N=39). Results We found substantial differences in the frequency of self-disturbances in patients with schizophrenia compared to healthy controls (total score differences, Z=-5.83, p< 0.001). On a neural level, patients with self-disturbances experienced a decreased functional brain connectivity of the default mode and salience networks as compared to the patients without self-disturbances and healthy controls. The differences were mainly explained by the factor ‘’foreign agents’’ and the novelty of the experience. Discussion The scale identifies self-disturbances in schizophrenia and confirms self-related processing in patients with schizophrenia to be associated with altered activation in the cortical midline structures. Supported by the grant projects MH CR AZV 17-32957A and MEYS NPU4NUDZ: LO1611.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vadim Osadchiy ◽  
Emeran A. Mayer ◽  
Kan Gao ◽  
Jennifer S. Labus ◽  
Bruce Naliboff ◽  
...  

Abstract Alterations in brain–gut–microbiome (BGM) interactions have been implicated in the pathogenesis of irritable bowel syndrome (IBS). Here, we apply a systems biology approach, leveraging neuroimaging and fecal metabolite data, to characterize BGM interactions that are driving IBS pathophysiology. Fecal samples and resting state fMRI images were obtained from 138 female subjects (99 IBS, 39 healthy controls (HCs)). Partial least-squares discriminant analysis (PLS-DA) was conducted to explore group differences, and partial correlation analysis explored significantly changed metabolites and neuroimaging data. All correlational tests were performed controlling for age, body mass index, and diet; results are reported after FDR correction, with q < 0.05 as significant. Compared to HCs, IBS showed increased connectivity of the putamen with regions of the default mode and somatosensory networks. Metabolite pathways involved in nucleic acid and amino acid metabolism differentiated the two groups. Only a subset of metabolites, primarily amino acids, were associated with IBS-specific brain changes, including tryptophan, glutamate, and histidine. Histidine was the only metabolite positively associated with both IBS-specific alterations in brain connectivity. Our findings suggest a role for several amino acid metabolites in modulating brain function in IBS. These metabolites may alter brain connectivity directly, by crossing the blood–brain-barrier, or indirectly through peripheral mechanisms. This is the first study to integrate both neuroimaging and fecal metabolite data supporting the BGM model of IBS, building the foundation for future mechanistic studies on the influence of gut microbial metabolites on brain function in IBS.


2018 ◽  
Vol 293 ◽  
pp. 299-309 ◽  
Author(s):  
Zikuan Chen ◽  
Arvind Caprihan ◽  
Eswar Damaraju ◽  
Srinivas Rachakonda ◽  
Vince Calhoun

Sign in / Sign up

Export Citation Format

Share Document