scholarly journals Oxidation Stress-Mediated MAPK Signaling Pathway Activation Induces Neuronal Loss in the CA1 and CA3 Regions of the Hippocampus of Mice Following Chronic Cold Exposure

2019 ◽  
Vol 9 (10) ◽  
pp. 273 ◽  
Author(s):  
Bin Xu ◽  
Li-Min Lang ◽  
Shuai Lian ◽  
Jing-Ru Guo ◽  
Jian-Fa Wang ◽  
...  

Chronic stress can damage homeostasis and induce various primary diseases. Although chronic cold stress is becoming an increasing problem for people who must work or live in extreme environments, risk-induced diseases in the central nervous system remain unstudied. Male C57BL/6 mice were exposed to an environment of 4 °C, 3 h per day for 1, 2, and 3 weeks and homeostasis in the hippocampus and neuronal apoptosis were evaluated by Western blotting, immunohistochemistry, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and immunofluorescence. The phenomena of oxidation stress, MAPK signaling pathway activation, anti-oxidation protein release, neuronal apoptosis increases, and neuronal proliferation inhibition were demonstrated in the CA1 and CA3 regions of mouse hippocampal tissues following cold exposure. We speculated that these phenomena were mediated by the MAPK pathway and were closely linked with oxidative stress in the hippocampus. This study provides novel concepts regarding neurodegenerative diseases, suggesting that chronic cold stress may be a critical factor to induce neurodegenerative diseases.

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 612 ◽  
Author(s):  
Bin Xu ◽  
Li-min Lang ◽  
Shi-Ze Li ◽  
Jing-Ru Guo ◽  
Jian-Fa Wang ◽  
...  

Cold stress can induce neuronal apoptosis in the hippocampus, but the internal mechanism involving neuronal loss induced by cold stress is not clear. In vivo, male and female C57BL/6 mice were exposed to 4 °C, 3 h per day for 1 week. In vitro, HT22 cells were treated with different concentrations of cortisol (CORT) for 3 h. In vivo, CORT levels in the hippocampus were measured using ELISA, western blotting, and immunohistochemistry to assess the neuronal population and oxidation of the hippocampus. In vitro, western blotting, immunofluorescence, flow cytometry, transmission electron microscopy, and other methods were used to characterize the mechanism of mitochondrial damage induced by CORT. The phenomena of excessive CORT-mediated oxidation stress and neuronal apoptosis were shown in mouse hippocampus tissue following cold exposure, involving mitochondrial oxidative stress and endogenous apoptotic pathway activation. These processes were mediated by acetylation of lysine 9 of histone 3, resulting in upregulation involving Adenosine 5‘-monophosphate (AMP)-activated protein kinase (APMK) phosphorylation and translocation of Nrf2 to the nucleus. In addition, oxidation in male mice was more severe. These findings provide a new understanding of the underlying mechanisms of the cold stress response and explain the apoptosis process induced by CORT, which may influence the selection of animal models in future stress-related studies.


Renal Failure ◽  
2015 ◽  
Vol 37 (5) ◽  
pp. 903-910 ◽  
Author(s):  
LieMei Zhang ◽  
Ling Ji ◽  
XiaoHong Tang ◽  
XiaoLei Chen ◽  
Zi Li ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225066 ◽  
Author(s):  
Minori Kubota ◽  
Kazuki Kakimoto ◽  
Takatoshi Nakagawa ◽  
Eiko Koubayashi ◽  
Kei Nakazawa ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiong Wang ◽  
Run-zhu Guo ◽  
Li Ma ◽  
Qiao-yan Ding ◽  
Jun-hua Meng ◽  
...  

Prolactinomas are harmful to human health, and the clinical first-line treatment drug is bromocriptine. However, 20% prolactinomas patients did not respond to bromocriptine. Hordenine is an alkaloid separated from Fructus Hordei Germinatus, which showed significant antihyperprolactinemia activity in rats. The aim of this study was to explore the effect and mechanism of hordenine on prolactinomas in rats. The study used estradiol to induce prolactinomas, which caused the activation of the pituitary mitogen-activated protein kinase (MAPK) pathway in rats significantly. The treatment of hordenine restored estradiol, induced the overgrowth of pituitary gland, and reduced the prolactin (PRL) accumulation in the serum and pituitary gland of rats by blocking the MAPK (p38, ERK1/2, and JNK) activation and production of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The antiprolactinoma effect of hordenine was mediated by inhibiting the MAPK signaling pathway activation in rats.


Aging ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 3156-3174 ◽  
Author(s):  
Yanxiao Xiang ◽  
Yayun Zhang ◽  
Yanni Xia ◽  
Hua Zhao ◽  
Anchang Liu ◽  
...  

2016 ◽  
Vol 62 (5) ◽  
pp. 13-14
Author(s):  
Jan Šrámek ◽  
Vlasta Němcová-Fürstová ◽  
Kamila Balušíková ◽  
Petr Daniel ◽  
Michael Jelínek ◽  
...  

Background. Pancreatic β-cells failure and apoptosis in response to chronically elevated concentrations of saturated fatty acids in blood was considered as one of the main causes of type 2 diabetes mellitus development. Although precise molecular mechanisms of this process are still unclear, there are some indications that the p38 MAPK signaling pathway could be involved.Aim, materials and methods. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in human pancreatic β-cells NES2Y. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested.Results. We have found that saturated SA at apoptosis-inducing concentration (1 mM) activated the p38 MAPK signaling pathway MKK3/6→p38 MAPK→MAPKAPK-2 and inhibited the ERK signaling pathway c-Raf→MEK1/2→ERK1/2. The inhibition of p38 MAPK expression by siRNA silencing had no significant effect on cell viability or the level of phosphorylated ERK pathway members after SA administration. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced no significant influence on cell viability or ERK pathway activation after SA exposure. The activation of p38 MAPK by the specific activator anisomycin led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members.Conclusions. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis.


2020 ◽  
Vol 19 (4) ◽  
pp. 248-256
Author(s):  
Yangmin Zheng ◽  
Ziping Han ◽  
Haiping Zhao ◽  
Yumin Luo

Conclusion: Stroke is a complex disease caused by genetic and environmental factors, and its etiological mechanism has not been fully clarified yet, which brings great challenges to its effective prevention and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However, the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the brain respond variously after stroke injury, therefore, the present review article is committed to summarizing the pathological process of different cell types participating in stroke, discussed the mechanism of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.


Sign in / Sign up

Export Citation Format

Share Document