scholarly journals Investigation of the Effective Use of Photovoltaic Modules in Architecture

Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 145 ◽  
Author(s):  
Waclaw Celadyn ◽  
Pawel Filipek

The application of photovoltaic systems is becoming a dominant feature in contemporary buildings. They allow for the achievement of zero-energy constructions. However, the principles of this strategy are not yet sufficiently known among architects. The purpose of this study is to enhance their expertise, which cannot be widened due to the shortage of targeted publications. The issue presentation was structured in a way that follows the typical design stages, beginning with large-scale urban problems up to the scale of building forms and components. Different types of photovoltaic (PV) systems are considered, based on their efficiency, relations with building fabrics, potential for thermally protecting buildings and their impact on esthetic values. The focus was mainly on the most popular PV modules. The application of these systems requires in-depth analyses which should be carried out by designers at the initial stage and through the next stages of the design. A method to analyze zoning plan regulations and site planning in view of PV modules’ efficiency is novel. This paper also contains considerations with regard to some other untypical applications of these systems. There is need for changing attitudes in architects and investors regarding the issue of promoting the systems through further elucidations.

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Abdelhakim Hassabou ◽  
Ahmed Abotaleb ◽  
Amir Abdallah

Operation of solar photovoltaic (PV) systems under high temperatures and high humidity represents one of the major challenges to guarantee higher system’s performance and reliability. The PV conversion efficiency degrades considerably at higher temperatures, while dust accumulation on PV module together with atmospheric water vapor condensation may cause a thick layer of mud that is difficult to be removed. Therefore, thermal management in hot climates is crucial for reliable application of PV systems to prevent the efficiency to drop due to temperature rise. This research focuses on the utilization of phase-change materials (PCM) for passive thermal management of solar systems. The main focus is to explore the effect of utilization of PCM-based cooling elements on the thermal behavior of solar PV modules. This paper presents the mathematical modeling and validation of PV modules. Both simulation and experimental data showed that the significant increase in PV peak temperature in summer affects the module’s efficiency, and consequently produced power, by 3% compared to standard testing condition (STC) as an average over the entire day, while it goes up to 8% and 10% during peak noon hours in winter and summer, respectively.


2010 ◽  
Vol 10 (2) ◽  
pp. S271-S273 ◽  
Author(s):  
Masakazu Ito ◽  
Keiichi Komoto ◽  
Kosuke Kurokawa
Keyword(s):  

2019 ◽  
Vol 9 ◽  
pp. 19-24
Author(s):  
Seth A. Robinson ◽  
George A. Meindl

Photovoltaics (PV) are a rapidly growing technology as global energy sectors shift towards “greener” solutions. Despite the clean energy benefits of solar power, photovoltaic panels and their structural support systems (e.g., cement) often contain several potentially toxic elements used in their construction. Determining whether these elements have the potential to leach into surrounding environments should be a research priority, as panels are already being implemented on a large scale. In this study, we analyzed soil taken from beneath photovoltaic modules to determine if they are being enriched by metals (lead, cadmium, lithium, strontium, nickel, barium, zinc, and copper) and metalloids (selenium) present in panel systems. The soil samples were collected from directly beneath c-Si photovoltaic modules and adjacent fields. Samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). Selenium, strontium, lithium, nickel, and barium levels measured in soil samples increased significantly in samples closer to PV systems. There were no significant differences in lead or cadmium levels near vs. far from the PV systems. Despite concentration differences for some elements near vs. far from the panel systems, no elements were, on average, present in concentrations that would pose a risk to nearby ecosystems. PV systems thus remain a cleaner alternative to traditional energy sources, such as coal, especially during the operation of these energy production systems.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wonwook Oh ◽  
Seongtak Kim ◽  
Soohyun Bae ◽  
Nochang Park ◽  
Sung-Il Chan ◽  
...  

We investigated the migration of Sn and Pb onto the Ag fingers of crystalline Si solar cells in photovoltaic modules aged in field for 6 years. Layers of Sn and Pb were found on the Ag fingers down to the edge of the solar cells. This phenomenon is not observed in a standard acceleration test condition for PV modules. In contrast to the acceleration test conditions, field aging subjects the PV modules to solar irradiation and moisture condensation at the interface between the solar cells and the encapsulant. The solder ribbon releases Sn and Pb via repeated galvanic corrosion and the Sn and Pb precipitate on Ag fingers due to the light-induced plating under solar irradiation.


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Vandana Jha ◽  
Uday Shankar Triar

This paper proposes an improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic modules. A new concept “Level of Improvement” has been proposed for evaluating unknown parameters of the nonlinear I-V equation of the single-diode model of PV module at any environmental condition, taking the manufacturer-specified data at Standard Test Conditions as inputs. The main contribution of the new concept is the improvement in the accuracy of values of evaluated parameters up to various levels and is based on mathematical equations of PV modules. The proposed evaluating method is implemented by MATLAB programming and, for demonstration, by using the values of parameters of the I-V equation obtained from programming results, a PV module model is build with MATLAB. The parameters evaluated by the proposed technique are validated with the datasheet values of six different commercially available PV modules (thin film, monocrystalline, and polycrystalline) at Standard Test Conditions and Nominal Operating Cell Temperature Conditions. The module output characteristics generated by the proposed method are validated with experimental data of FS-270 PV module. The effects of variation of ideality factor and resistances on output characteristics are also studied. The superiority of the proposed technique is proved.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Lili Yang ◽  
Tong Heng ◽  
Guang Yang ◽  
Xinchen Gu ◽  
Jiaxin Wang ◽  
...  

The factors influencing the effective utilization coefficient of irrigation water are not understood well. It is usually considered that this coefficient is lower in areas with large-scale irrigation. With this background, we analyzed the effective utilization coefficient of irrigation water using the analytic hierarchy process using data from 2014 to 2019 in Shihezi City, Xinjiang. The weights of the influencing factors on the effective utilization coefficient of irrigation water in different irrigation areas were analyzed. Predictions of the coefficient’s values for different years were made by understanding the trends based on the grey model. The results show that the scale of the irrigation area is not the only factor determining the effective utilization coefficient of irrigation water. Irrigation technology, organizational integrity, crop types, water price management, local economic level, and channel seepage prevention are the most critical factors affecting the effective use of irrigation water. The grey model prediction results show that the effective utilization coefficient of farmland irrigation water will continuously increase and reach 0.7204 in 2029. This research can serve as a reference for government authorities to make scientific decisions on water-saving projects in irrigation districts in terms of management, operation, and investment.


2014 ◽  
Vol 60 (4) ◽  
pp. 315-320 ◽  
Author(s):  
Gustaw Mazurek

Abstract Estimation of Global Tilted Irradiation (GTI) is a key to performance assessment of typical solar systems since they usually employ tilted photovoltaic (PV) modules or collectors. Numerous solar radiation databases can deliver irradiation values both on horizontal and tilted plane, however they are validated mostly with horizontal-plane ground measurements. In this paper we have compared GTI estimates retrieved from five Internet databases with results of measurements at two PV systems located in Poland. Our work shows that in spite of good agreement in annual scale, there is a tendency to underestimate GTI in summer and overestimate in winter, when PV modules can receive less than a half of expected irradiation. The latter issue affects sizing of PV system components and implies a correction needed to achieve all-year long operation.


Sign in / Sign up

Export Citation Format

Share Document