scholarly journals Characterization of Molecular Spacer-Functionalized Nanostructured Carbons for Electrical Energy Storage Supercapacitor Materials

2020 ◽  
Vol 6 (4) ◽  
pp. 66
Author(s):  
Justin Zuczek ◽  
Matthew Bonfield ◽  
Nesreen Elathram ◽  
William R. Hixson ◽  
Terawit Kongruengkit ◽  
...  

The use of molecular spacers between Carbon Nanotubes (CNTs) has been shown to increase the ion-accessible surface area for use in supercapacitor materials. Maintaining porosity and electrical conductivity is important for maximizing capacitance, energy storage, and power. Two reported novel coordination complexes have shown exceptional Faradaic charge transfer and binding capabilities to prevent CNT aggregation. Dispersion stability measurements show less aggregation of HiPco Single Walled CNTs (SWCNTs) compared to other chirality and multilayered nanotubes. Cu2FcOH binds weakly to CNTs compared +2Zn2 and +2Ru2 due to Columbic electrostatic interactions, which is favorable because it does not collapse the electrical double layer as strongly as +2Zn2 or +2Ru2. Adsorption isotherms and a full characterization (1H NMR, ATR FT-IR, UV-Vis, CV) of these novel complexes are presented. Electrical characterization using CV, charge discharge, and electrochemical impedance spectroscopy and the supercapacitor performance of functionalized thin film electrodes are presented as a function of spacer properties and nanostructured carbon tube diameter. This study uses rigid, earth-abundant coordination complexes that bind to and intercalate between SWCNTs. These functionalized nanostructured carbons are then used to make electrodes for electrical double layer supercapacitors. A complete description of the synthesis, characterization, and processing of these materials is described.

2009 ◽  
Vol 1236 ◽  
Author(s):  
Gaurav Chatterjee ◽  
Manish Bothara ◽  
Srivatsa Aithal ◽  
Vinay J Nagraj ◽  
Peter Wiktor ◽  
...  

AbstractChanges in protein glycosylation have great potential as markers for the early diagnosis of cancer and other diseases. The current analytical tools for the analysis of glycan structures need expensive instrumentation, advanced expertise, is time consuming and therefore not practical for routine screening of glycan biomarkers from human samples in a clinical setting.We are developing a novel ultrasensitive diagnostic platform called ‘NanoMonitor’ to enable rapid label-free glycosylation analysis. The technology is based on electrochemical impedance spectroscopy where capacitance changes are measured at the electrical double layer interface as a result of interaction of two molecules.The NanoMonitor platform consists of a printed circuit board with array of electrodes forming multiple sensor spots. Each sensor spot is overlaid with a nanoporous alumina membrane that forms a high density of nanowells. Lectins, proteins that bind to and recognize specific glycan structures, are conjugated to the surface of nanowells. When specific glycoproteins from a test sample bind to lectins in the nanowells, it produces a perturbation to the electrical double layer at the solid/liquid interface at the base of each nanowell. This perturbation results in a change in the impedance of the double layer which is dominated by the capacitance changes within the electrical double layer.The nanoscale confinement or crowding of biological macromolecules within the nanowells is likely to enhance signals from the interaction of glycoproteins with the lectins leading to a high sensitivity of detection with the NanoMonitor as compared to other electrochemical techniques.Using a panel of lectins, we were able to detect subtle changes in the glycosylation of fetuin protein as well as differentiate glycoproteins from normal versus cancerous cells. Our results indicate that NanoMonitor can be used as a cost-effective miniature electronic biosensor for the detection of glycan biomarkers.


2018 ◽  
Vol 10 (10) ◽  
pp. 3630 ◽  
Author(s):  
Yannan Lin ◽  
Hongxia Zhao ◽  
Feng Yu ◽  
Jinfeng Yang

An extended undergraduate experiment involving electrochemical energy storage devices and green energy is described herein. This experiment allows for curriculum design of specific training modules in the field of green chemistry. Through the study of electrical double layer capacitors, students learned to assemble an electrical double layer capacitor and perform electrochemical measurements (cyclic voltammetry and galvanostatic charge-discharge) to evaluate the effect of various electrolytes. In addition, students powered a diode with the electrical double layer capacitors. We use the laboratory module to successfully connect electrochemistry with green chemistry through the study of a real-world application. In addition, a green chemistry case study was introduced to the laboratory curriculum. During the experiment, students acquired fundamental experience in electrochemistry and gained analysis skills, critical thinking, and scientific literacy. The results of this work can be used as a case study on green chemical education that considers the students’ awareness of renewable and clean energy fields.


2021 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Gbenro Babajide Folaranmi ◽  
Anthony Ekennia ◽  
Nkiruka Chidiebere Ani ◽  
Richard Chukwuemeka Ehiri

In this paper, a commercial polymeric resin precursor (polystyrene sulphonate beads) was used as a source of carbon spheres. The resin was pyrolyzed at different temperatures (700, 800, and 900 °C) and the resulting carbons were analyzed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). From the result of EIS, carbon spheres obtained at 700 °C (CS−700) have the least ohmnic resistance and highest capacitance. In furtherance, the resin was chemically activated with iron (III) chloride FeCl3·6H2O at different concentration (0.1 M, 0.3 M, and 0.5 M) and pyrolyzed at 700 °C to obtain activated carbon sphere namely (ACS 700−0.1, ACS 700−0.3, and ACS 700−0.5) in which the last digit of the samples denotes the concentration of FeCl3. Scanning electron microscope (SEM) showed that the carbon is of spherical shape; X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and X-ray photon electron spectroscopy (XPS) revealed successful introduction of Fe on the surface of the carbon. Out of all the activated carbon spheres, ACS 700−0.1 exhibited highest double layer capacitance of 9 µF cm−2 and lowest charge transfer resistance of 3.33 KΩ·cm2. This method shows that carbon spheres obtained from a polymeric source can be easily improved by simple resin modification and the carbon could be a potential candidate for an electrical double layer capacitor


2010 ◽  
Vol 25 (8) ◽  
pp. 1447-1450 ◽  
Author(s):  
H. Kurig ◽  
A. Jänes ◽  
E. Lust

Tetrakis(diethylamino)phosphonium tetrafluoroborate (TDENPBF4), tetrakis(diethylamino)phosphonium hexafluorophosphate (TDENPPF6), and tetrakis(dimethylamino)phosphonium tetrafluoroborate (TDMNPBF4) in acetonitrile (AN) have been studied as electrical double-layer capacitor electrolytes in a two-electrode test cell using titanium carbide derived carbon, C(TiC), as an electrode material. Electrochemical characteristics for C(TiC)|1 M TDENPBF4 + AN, C(TiC)|1 M TDENPPF6 + AN, and C(TiC)|1 M TDMNPBF4 + AN interfaces have been obtained by cyclic voltammetry, constant current charging/discharging, and electrochemical impedance spectroscopy. High-capacitance (85 °F/g) and gravimetric power (269 kW/kg) have been achieved at cell voltage 3.2 V. Data obtained have been compared with results published previously.


2020 ◽  
Vol 22 (32) ◽  
pp. 18229-18238
Author(s):  
Amanda B. Quadre ◽  
Sidney J. de Carvalho ◽  
Guilherme Volpe Bossa

The differential capacitance of an electrical double layer is a topic of great importance to develop more efficient and environment-friendly energy storage devices: electric double layer supercapacitors.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1938 ◽  
Author(s):  
Shujahadeen B. Aziz ◽  
Jihad M. Hadi ◽  
Elham M. A. Dannoun ◽  
Rebar T. Abdulwahid ◽  
Salah R. Saeed ◽  
...  

In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting technique. The structural features of the electrolyte films were investigated through the X-ray diffraction (XRD) pattern. The enrichment of the amorphous phase with increasing glycerol concentration was confirmed by observing broad humps. The electrical impedance spectroscopy (EIS) portrays the improvement of ionic conductivity from 10−5 S/cm to 10−3 S/cm upon the addition of plasticizer. The electrolytes incorporated with 28 wt.% and 42 wt.% of glycerol were observed to be mainly ionic conductor as the ionic transference number measurement (TNM) was found to be 0.97 and 0.989, respectively. The linear sweep voltammetry (LSV) investigation indicates that the maximum conducting sample is stable up to 2 V. An electrolyte with the highest conductivity was used to make an energy storage electrical double-layer capacitor (EDLC) device. The cyclic voltammetry (CV) plot depicts no distinguishable peaks in the polarization curve, which means no redox reaction has occurred at the electrode/electrolyte interface. The fabricated EDLC displays the initial specific capacitance, equivalent series resistance, energy density, and power density of 35.5 F/g, 65 Ω, 4.9 Wh/kg, and 399 W/kg, respectively.


Sign in / Sign up

Export Citation Format

Share Document