scholarly journals The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 946 ◽  
Author(s):  
Eirini Terpsi Vitti ◽  
Jason L Parsons

Proton beam therapy (PBT) offers significant benefit over conventional (photon) radiotherapy for the treatment of a number of different human cancers, largely due to the physical characteristics. In particular, the low entrance dose and maximum energy deposition in depth at a well-defined region, the Bragg peak, can spare irradiation of proximal healthy tissues and organs at risk when compared to conventional radiotherapy using high-energy photons. However, there are still biological uncertainties reflected in the relative biological effectiveness that varies along the track of the proton beam as a consequence of the increases in linear energy transfer (LET). Furthermore, the spectrum of DNA damage induced by protons, particularly the generation of complex DNA damage (CDD) at high-LET regions of the distal edge of the Bragg peak, and the specific DNA repair pathways dependent on their repair are not entirely understood. This knowledge is essential in understanding the biological impact of protons on tumor cells, and ultimately in devising optimal therapeutic strategies employing PBT for greater clinical impact and patient benefit. Here, we provide an up-to-date review on the radiobiological effects of PBT versus photon radiotherapy in cells, particularly in the context of DNA damage. We also review the DNA repair pathways that are essential in the cellular response to PBT, with a specific focus on the signaling and processing of CDD induced by high-LET protons.

Author(s):  
B Meier ◽  
NV Volkova ◽  
Y Hong ◽  
S Bertolini ◽  
V González-Huici ◽  
...  

AbstractGenome integrity is particularly important in germ cells to faithfully preserve genetic information across generations. As yet little is known about the contribution of various DNA repair pathways to prevent mutagenesis. Using the C. elegans model we analyse mutational spectra that arise in wild-type and 61 DNA repair and DNA damage response mutants cultivated over multiple generations. Overall, 44% of lines show >2-fold increased mutagenesis with a broad spectrum of mutational outcomes including changes in single or multiple types of base substitutions induced by defects in base excision or nucleotide excision repair, or elevated levels of 50-400 bp deletions in translesion polymerase mutants rev-3(pol ζ) and polh-1(pol η). Mutational signatures associated with defective homologous recombination fall into two classes: 1) mutants lacking brc-1/BRCA1 or rad-51/RAD51 paralogs show elevated base substitutions, indels and structural variants, while 2) deficiency for MUS-81/MUS81 and SLX-1/SLX1 nucleases, and HIM-6/BLM, HELQ-1/HELQ and RTEL-1/RTEL1 helicases primarily cause structural variants. Genome-wide investigation of mutagenesis patterns identified elevated rates of tandem duplications often associated with inverted repeats in helq-1 mutants, and a unique pattern of ‘translocation’ events involving homeologous sequences in rip-1 paralog mutants. atm-1/ATM DNA damage checkpoint mutants harboured complex structural variants enriched in subtelomeric regions, and chromosome end-to-end fusions. Finally, while inactivation of the p53-like gene cep-1 did not affect mutagenesis, combined brc-1 cep-1 deficiency displayed increased, locally clustered mutagenesis. In summary, we provide a global view of how DNA repair pathways prevent germ cell mutagenesis.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1840
Author(s):  
Taisuke Sumiya ◽  
Masashi Mizumoto ◽  
Yoshiko Oshiro ◽  
Keiichiro Baba ◽  
Motohiro Murakami ◽  
...  

Proton beam therapy (PBT) is a curative treatment for hepatocellular carcinoma (HCC), because it can preserve liver function due to dose targeting via the Bragg peak. However, the degree of direct liver damage by PBT is unclear. In this study, we retrospectively analyzed liver/biliary enzymes and total bilirubin (T-Bil) as markers of direct liver damage during and early after PBT in 300 patients. The levels of these enzymes and bilirubin were almost stable throughout the treatment period. In patients with normal pretreatment levels, aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), and T-Bil were abnormally elevated in only 2 (1.2%), 1 (0.4%), 0, 2 (1.2%), and 8 (3.5%) patients, respectively, and in 8 of these 13 patients (61.5%) the elevations were temporary. In patients with abnormal pretreatment levels, the levels tended to decrease during PBT. GGT and T-Bil were elevated by 1.62 and 1.57 times in patients who received 66 Gy (RBE) in 10 fractions and 74 Gy (RBE) in 37 fractions, respectively, but again these changes were temporary. These results suggest that direct damage to normal liver caused by PBT is minimal, even if a patient has abnormal pretreatment enzyme levels.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadezda V. Volkova ◽  
Bettina Meier ◽  
Víctor González-Huici ◽  
Simone Bertolini ◽  
Santiago Gonzalez ◽  
...  

AbstractCells possess an armamentarium of DNA repair pathways to counter DNA damage and prevent mutation. Here we use C. elegans whole genome sequencing to systematically quantify the contributions of these factors to mutational signatures. We analyse 2,717 genomes from wild-type and 53 DNA repair defective backgrounds, exposed to 11 genotoxins, including UV-B and ionizing radiation, alkylating compounds, aristolochic acid, aflatoxin B1, and cisplatin. Combined genotoxic exposure and DNA repair deficiency alters mutation rates or signatures in 41% of experiments, revealing how different DNA alterations induced by the same genotoxin are mended by separate repair pathways. Error-prone translesion synthesis causes the majority of genotoxin-induced base substitutions, but averts larger deletions. Nucleotide excision repair prevents up to 99% of point mutations, almost uniformly across the mutation spectrum. Our data show that mutational signatures are joint products of DNA damage and repair and suggest that multiple factors underlie signatures observed in cancer genomes.


2020 ◽  
Vol 93 (1107) ◽  
pp. 20190873 ◽  
Author(s):  
Neil G Burnet ◽  
Ranald I Mackay ◽  
Ed Smith ◽  
Amy L Chadwick ◽  
Gillian A Whitfield ◽  
...  

The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit. The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1680
Author(s):  
Tassanee Lerksuthirat ◽  
Rakkreat Wikiniyadhanee ◽  
Sermsiri Chitphuk ◽  
Wasana Stitchantrakul ◽  
Somponnat Sampattavanich ◽  
...  

Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.


2010 ◽  
Vol 35 (1) ◽  
pp. 63-66 ◽  
Author(s):  
John R. Zullo ◽  
Rajat J. Kudchadker ◽  
X. Ronald Zhu ◽  
Narayan Sahoo ◽  
Michael T. Gillin

2018 ◽  
Vol 19 (12) ◽  
pp. 3779 ◽  
Author(s):  
Sebastian Oeck ◽  
Klaudia Szymonowicz ◽  
Gesa Wiel ◽  
Adam Krysztofiak ◽  
Jamil Lambert ◽  
...  

Proton beam therapy is increasingly applied for the treatment of human cancer, as it promises to reduce normal tissue damage. However, little is known about the relationship between linear energy transfer (LET), the type of DNA damage, and cellular repair mechanisms, particularly for cells irradiated with protons. We irradiated cultured cells delivering equal doses of X-ray photons, Bragg-peak protons, or plateau protons and used this set-up to quantitate initial DNA damage (mainly DNA double strand breaks (DSBs)), and to analyze kinetics of repair by detecting γH2A.X or 53BP1 using immunofluorescence. The results obtained validate the reliability of our set-up in delivering equal radiation doses under all conditions employed. Although the initial numbers of γH2A.X and 53BP1 foci scored were similar under the different irradiation conditions, it was notable that the maximum foci level was reached at 60 min after irradiation with Bragg-peak protons, as compared to 30 min for plateau protons and photons. Interestingly, Bragg-peak protons induced larger and irregularly shaped γH2A.X and 53BP1 foci. Additionally, the resolution of these foci was delayed. These results suggest that Bragg-peak protons induce DNA damage of increased complexity which is difficult to process by the cellular repair apparatus.


2019 ◽  
Vol 186 (2-3) ◽  
pp. 172-175 ◽  
Author(s):  
Werner Friedland ◽  
Pavel Kundrát ◽  
Janine Becker ◽  
Markus Eidemüller

ABSTRACT The biophysical simulation tool PARTRAC has been primarily developed to model radiation physics, chemistry and biology on nanometre to micrometre scales. However, the tool can be applied in simulating radiation effects in an event-by-event manner over macroscopic volumes as well. Benchmark simulations are reported showing that PARTRAC does reproduce the macroscopic Bragg peaks of proton beams, although the penetration depths are underestimated by a few per cent for high-energy beams. PARTRAC also quantifies the increase in DNA damage and its complexity along the beam penetration depth. Enhanced biological effectiveness is predicted in particular within distal Bragg peak parts of therapeutic proton beams.


Sign in / Sign up

Export Citation Format

Share Document