scholarly journals DOCK1 Regulates Growth and Motility through the RRP1B-Claudin-1 Pathway in Claudin-Low Breast Cancer Cells

Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1762 ◽  
Author(s):  
Chiang ◽  
Chang ◽  
Chen ◽  
Chang

Dedicator of cytokinesis 1 (DOCK1) is a critical regulator of cancer metastasis. Claudins are transmembrane proteins that play a role in epithelial barrier integrity. Due to a loss or low expression of claudins (CLDN), the claudin-low type of triple-negative breast cancer (TNBC) is characterized by a mesenchymal-like phenotype with strong metastatic potential. In order to elucidate the mechanism of DOCK1 in cancer metastasis, we first analyzed the transcriptomic changes using a clinical database of human TNBC and found that the increase in DOCK1 expression was highly correlated with the poor survival rate of TNBC patients. Interference with DOCK1 expression by shRNA resulted in re-expression of claudin-1 in conjunction with significant inhibition of cell viability and motility of claudin-low breast cancer cells. Accordingly, overexpression of claudin-1 suppressed cell viability and migration. Genetic knockdown and pharmacological blockade of Rac1/Rac2 up-regulated claudin-1. DOCK1 knockdown also caused a decrease in DNA methyltransferase (DNMT) expression and an increase in claudin-1 transcript and promoter activity. Furthermore, RRP1B mediated DOCK1 depletion, which up-regulated claudin-1 expression, cell viability, and motility in claudin-low breast cancer cells. This study demonstrated that DOCK1 mediates growth and motility through down-regulated claudin-1 expression via the RRP1BDNMTclaudin-1 pathway and that claudin-1 serves as an important effector in DOCK1-mediated cancer progression and metastasis in claudin-low breast cancer cells.

2009 ◽  
Vol 390 (7) ◽  
Author(s):  
Aurélie Cazet ◽  
Sophie Groux-Degroote ◽  
Béatrice Teylaert ◽  
Kyung-Min Kwon ◽  
Sylvain Lehoux ◽  
...  

Abstract The disialoganglioside GD3 is an oncofetal marker of a variety of human tumors including melanoma and neuroblastoma, playing a key role in tumor progression. GD3 and 9-O-acetyl-GD3 are overexpressed in approximately 50% of invasive ductal breast carcinoma, but no relationship has been established between disialoganglioside expression and breast cancer progression. In order to determine the effect of GD3 expression on breast cancer development, we analyzed the biosynthesis of gangliosides in several breast epithelial cell lines including MDA-MB-231, MCF-7, BT-20, T47-D, and MCF10A, by immunocytochemistry, flow cytometry, and real-time PCR. Our results show that, in comparison to tumors, cultured breast cancer cells express a limited pattern of gangliosides. Disialogangliosides were not detected in any cell line and GM3 was only observed at the cell surface of MDA-MB-231 cells. To evaluate the influence of GD3 in breast cancer cell behavior, we established and characterized MDA-MB-231 cells overexpressing GD3 synthase. We show that GD3 synthase expressing cells accumulate GD3, GD2, and GT3 at the cell surface. Moreover, GD3 synthase overexpression bypasses the need of serum for cell growth and increases cell migration. This suggests that GD3 synthase overexpression may contribute to increasing the malignant properties of breast cancer cells.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Xuguang Hu ◽  
Dan Ding ◽  
Jiayi Zhang ◽  
Jianguo Cui

Abstract Radiotherapy is a major therapeutic strategy for breast cancer, while cancer radioresistance remains an obstacle for the successful control of the tumor. Novel radiosensitizing targets are to be developed to overcome radioresistance. Recently, long non-coding RNAs (lncRNAs) were proved to play critical roles in cancer progression. Among all, lncRNA HOTAIR was found to participate in cancer metastasis and chemoresistance. In the present study, we aimed to investigate the radiosensitizing effects of targeting HOTAIR and the underlying mechanism. Our data showed that HOTAIR (HOX antisense intergenic RNA) was up-regulated in breast cancer cells and tissues, and the expression of HOTAIR increased following irradiation. Knockdown of HOTAIR inhibited cell survival and increased cell apoptosis in response to ionizing radiation. Moreover, compared with control group, radiation induced more DNA damage and cell cycle arrest in HOTAIR knockdown cells. Finally, we found that the radiosentizing effects of HOTAIR were related to the up-regulation of miR-218, a ceRNA of HOTAIR. In conclusion, our finding showed that HOTAIR inhibition sensitizes breast cancer cells to ionizing radiation, induced severe DNA damage and activated apoptosis pathways, suggesting a possible role of HOTAIR as a novel target for breast cancer radiosensitization.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yi-Chun Cheng ◽  
Li-Yu Su ◽  
Li-Han Chen ◽  
Tzu-Pin Lu ◽  
Eric Y. Chuang ◽  
...  

Long non-coding RNAs (lncRNAs) have been found to participate in multiple genetic pathways in cancer. Also, mitochondria-associated lncRNAs have been discovered to modulate mitochondrial function and metabolism. Previously, we identified oxygen-responsive lncRNAs in MCF-7 breast cancer cells under different oxygen concentrations. Among them, a novel mitochondria-encoded lncRNA, mitochondrial oxygen-responsive transcript 1 (MTORT1), was chosen for further investigation. Nuclear, cytoplasmic, and mitochondrial fractionation assays were performed to evaluate the endogenous expression levels of MTORT1 in breast cancer cells. In vitro proliferation and migration assays were conducted to investigate the functions of MTORT1 in breast cancer cells by knockdown of MTORT1. RNA immunoprecipitation and luciferase reporter assays were used to examine the physical binding between MTORT1 and microRNAs. Our results showed that MTORT1 had low endogenous expression levels in breast cancer cells and was mainly located in the mitochondria. Knockdown of MTORT1 enhanced cell proliferation and migration, implying a tumor suppressor role of this novel mitochondrial lncRNA. MTORT1 served as sponge of miR-26a-5p to up-regulate its target genes, CREB1 and STK4. Our findings shed some light on the characterization, function, and regulatory mechanism of the novel hypoxia-induced mitochondrial lncRNA MTORT1, which functions as a microRNA sponge and may inhibit breast cancer progression. These data suggest that MTORT1 may be a candidate for therapeutic targeting of breast cancer progression.


2021 ◽  
Author(s):  
Dale B. Bosco ◽  
Yi Ren ◽  
Karin A. Vallega ◽  
Qing-Xiang Amy Sang

Abstract Background Breast cancer is the most common cancer in women and the leading cause of female cancer deaths worldwide. Obesity causes chronic inflammation and is a risk factor for post-menopausal breast cancer and poor prognosis. Obesity triggers increased infiltration of macrophages into adipose tissue, yet little research has focused on the effects of macrophages in early stages of breast tumor development in obese patients. In this study, the effects of pro-inflammatory macrophages on breast cancer-adipocyte crosstalk were investigated.Methods An innovative human cell co-culture system was used to model the paracrine interactions among adipocytes, macrophages, and breast cancer cells, and how they facilitate tumor progression. The effects on cancer cells were examined using cell counts and migration assays. Quantitative reverse-transcription polymerase chain reaction was used to measure the expression levels of several cytokines and proteases to analyze adipocyte cancer-association.Results Macrophage conditioned media intensified the effects of breast cancer-adipocyte crosstalk. Adipocytes became delipidated and increased production of pro-inflammatory cytokines, even in the absence of cancer cells, although the expression levels were highest with all three cell components. As a result, co-cultured breast cancer cells became more aggressive, with increased proliferation and migration compared to adipocyte-breast cancer co-cultures treated with unconditioned media.Conclusions Macrophage conditioned media promotes adipocyte cancer-association. These macrophage-adipocyte paracrine interactions promote breast cancer cell proliferation and migration. Thus, macrophages may contribute to adipocyte inflammation and cancer-association and promote breast cancer progression.


Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1607-1617 ◽  
Author(s):  
Jiacong You ◽  
Da Mi ◽  
Xiaolei Zhou ◽  
Ling Qiao ◽  
Hang Zhang ◽  
...  

Metastasis of breast cancer cells is the leading cause of death in breast cancer patients. Why do breast cancer cells with high metastatic potential always keep in high proliferation and migration? The endogenous signaling pathways associated with tumor metastasis remain unclear. In the present study, we address whether a link between ERK and the enzymes associated with arachidonic acid (AA) metabolism contributes to the proliferation and migration of breast cancer cells. To identify endogenous signaling pathways involved in sustaining proliferation and migration of breast cancer cells, we performed parallel studies of human breast cancer cell lines that differ in their metastatic potential. Our data showed that cell lines with high metastatic potential, including LM-MCF-7 and MDA-MB-231, exhibited significantly high, sustained levels of phosphorylated ERK (pERK) 1/2 relative to MCF-7 cells. Our findings showed that β-catenin, cyclin D1, and survivin serve downstream effectors of pERK1/2, whereas Gi/o proteins, phospholipase C, and protein kinase C serve upstream activators of pERK1/2. In addition, AA metabolites were able to activate Gi/o proteins, phospholipase C, protein kinase C, and pERK1/2 cascades through cyclooxygenase and lipoxygenase. In contrast, activated ERK1/2 promoted AA metabolism through a positive feedback loop, which conduces to a high proliferative potential and the migration of the breast cancer cells. Together, our data provide new mechanistic insights into possible endogenous signaling metastatic signaling pathways involved in maintaining proliferation and migration of breast cancer cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sudipa Saha Roy ◽  
Ratna K. Vadlamudi

Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chung-Hsien Shih ◽  
Li-Ling Chuang ◽  
Mong-Hsun Tsai ◽  
Li-Han Chen ◽  
Eric Y. Chuang ◽  
...  

Hypoxia, a common process during tumor growth, can lead to tumor aggressiveness and is tightly associated with poor prognosis. Long noncoding RNAs (lncRNAs) are long ribonucleotides (>200 bases) with limited ability to translate proteins, and are known to affect many aspects of cellular function. One of their regulatory mechanisms is to function as a sponge for microRNA (miRNA) to modulate its biological functions. Previously, MALAT1 was identified as a hypoxia-induced lncRNA. However, the regulatory mechanism and functions of MALAT1 in breast cancer are still unclear. Therefore, we explored whether MALAT1 can regulate the functions of breast cancer cells through miRNAs. Our results showed the expression levels of MALAT1 were significantly up-regulated under hypoxia and regulated by HIF-1α and HIF-2α. Next, in contrast to previous reports, nuclear and cytoplasmic fractionation assays and fluorescence in situ hybridization indicated that MALAT1 was mainly located in the cytoplasm. Therefore, the labeling of MALAT1 as a nuclear marker should be done with the caveat. Furthermore, expression levels of miRNAs and RNA immunoprecipitation using antibody against AGO2 showed that MALAT1 functioned as a sponge of miRNA miR-3064-5p. Lastly, functional assays revealed that MALAT1 could promote cellular migration and proliferation of breast cancer cells. Our findings provide evidence that hypoxia-responsive long non-coding MALAT1 could be transcriptionally activated by HIF-1α and HIF-2α, act as a miRNA sponge of miR-3064-5p, and promote tumor growth and migration in breast cancer cells. These data suggest that MALAT1 may be a candidate for therapeutic targeting of breast cancer progression.


2020 ◽  
Author(s):  
Daoyuan Tu ◽  
Jin Dou ◽  
Mingkao Wang ◽  
Haiwen Zhuang ◽  
Xiaoyu Xiaoyu

Abstract Background: Breast cancer is a kind of malignant tumor that severely threatens women’s health and life worldwide. Macrophages have been reported to mediate tumor progression, while the potential mechanism still needs further identification.Methods: Human monocytic cell line THP-1 was used to induce M2-macrophage. Real-time PCR and western blot were performed to determine gene expression in mRNA and protein level, respectively. Cell proliferation was determined using MTT assays, while cell migration was detected based on the scratch wound healing assays.Results: The supernatant medium of M2-macrophages incubated breast cancer cells showed increased cell proliferation and reduced expression of IRF-7. Overexpression of IRF-7 reversed the increased level of M2-macrophage induced cell proliferation and migration. The supernatant medium of M2-macrophages incubation promoted miR-1587 expression in breast cancer cells. miR-1587 overexpression promoted cell proliferation and migration of breast cancer. In addition, miR-1587 knockdown suppressed cell proliferation and migration that induced by M2-macrophages. miR-1587 targets IRF-7 to regulate its expression. Knockdown of IRF-7 reversed the effects of miR-1587 knockdown on cell proliferation and migration.Conclusion: Collectively, this study revealed that miR-1587/IRF-7 mediated the mechanism of M2-macrophages-induced breast cancer progression, and this would shed light on the further clinical therapy of breast cancer.


2021 ◽  
Author(s):  
Di-Di Zhang ◽  
Xiao-Lin Sun ◽  
Zhao-Yuan Liang ◽  
Li-Na Zhang

Abstract Background: Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Many studies have shown that FAM96A and FAM96B play many different functions mainly through interacting with other different proteins. Recently, several studies show that FAM96A and FAM96B are significantly down-regulated compared in human gastrointestinal stromal tumors, colon cancer, liver cancer and gastric cancer with corresponding normal tissues. However, the molecular regulatory mechanisms of FAM96A and FAM96B in breast cancer development and metastasis are still unclear. In this work, we aimed to explore the molecular mechanisms of FAM96A and FAM96B in breast cancer progression.Methods: We used specific siRNAs to down-regulate FAM96A and FAM96B expression, and used recombinant plasmids to up-regulate FAM96A and FAM96B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation assays. Cell cycle and apoptosis were detected by flow cytometry analysis. Wound healing and transwell assays were used to examine cell migration and invasion abilities. The relationships among FAM96A/B, EMT and Wnt/β-catenin signaling pathway were determined by analyzing the expression changes of classical markers and biological functional changes after XAV-939 inhibitor treatment. Results: We found that FAM96A and FAM96B expression in breast cancer was down-regulated. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and led to cell cycle arrested in G0/G1 phase. Conversely, FAM96A/B knockdown exhibited the opposite effects on breast cancer cells. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/β-catenin signaling pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/β-catenin signaling pathway in breast cancer cells. Furthermore, a Wnt pathway inhibitor, XAV-939 treatment reversed the promoting effects of FAM96A and FAM96B knockdown on breast cancer cell proliferation, invasion and migration.Conclusions: Our findings revealed that FAM96A and FAM96B may act as tumor suppressor genes and inhibit breast cancer progression via modulating the Wnt/β-catenin pathway, which can provide the potential markers for the diagnosis and treatment of breast cancer.


2021 ◽  
Author(s):  
Deborah Fanfone ◽  
Zhi Chong Wu ◽  
Jade Mammi ◽  
Kevin Berthenet ◽  
David Neves ◽  
...  

Mechanical stress is known to fuel several hallmarks of cancer, ranging from genome instability to uncontrolled proliferation or invasion. Cancer cells are constantly challenged by mechanical stresses not only in the primary tumour but also during metastasis. However, this latter has seldom been studied with regards to mechanobiology, in particular resistance to anoikis, a cell death programme triggered by loss of cell adhesion. Here, we show in vitro that migrating breast cancer cells develop resistance to anoikis following their passage through microporous membranes mimicking confined migration (CM), a mechanical constriction that cancer cells encounter during metastasis. This CM-induced resistance was mediated by Inhibitory of Apoptosis Proteins (IAPs), and sensitivity to anoikis could be restored after their inhibition using SMAC mimetics. Anoikis-resistant mechanically-stressed cancer cells displayed enhanced cell motility and evasion from natural killer cell-mediated immune surveillance, as well as a marked advantage to form lung metastatic lesions in mice. Our findings reveal that CM increases the metastatic potential of breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document