scholarly journals Natural Killer Cells in Post-Transplant Lymphoproliferative Disorders

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1836
Author(s):  
Cecilia Nakid-Cordero ◽  
Marine Baron ◽  
Amélie Guihot ◽  
Vincent Vieillard

Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening complications arising after solid organ or hematopoietic stem cell transplantations. Although the majority of these lymphoproliferations are of B cell origin, and are frequently associated with primary Epstein–Barr virus (EBV) infection or reactivation in the post-transplant period, rare cases of T cell and natural killer (NK) cell-originated PTLDs have also been described. A general assumption is that PTLDs result from the impairment of anti-viral and anti-tumoral immunosurveillance due to the long-term use of immunosuppressants in transplant recipients. T cell impairment is known to play a critical role in the immune-pathogenesis of post-transplant EBV-linked complications, while the role of NK cells has been less investigated, and is probably different between EBV-positive and EBV-negative PTLDs. As a part of the innate immune response, NK cells are critical for protecting hosts during the early response to virus-induced tumors. The complexity of their function is modulated by a myriad of activating and inhibitory receptors expressed on cell surfaces. This review outlines our current understanding of NK cells in the pathogenesis of PTLD, and discusses their potential implications for current PTLD therapies and novel NK cell-based therapies for the containment of these disorders.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1462-1462
Author(s):  
Bree Foley ◽  
Sarah Cooley ◽  
Julie Curtsinger ◽  
Michael Verneris ◽  
Daniel J. Weisdorf ◽  
...  

Abstract Abstract 1462 NK cells are the first lymphocyte subset to reconstitute following hematopoietic stem cell transplantation (HSCT) and they play a pivotal role in mediation of the graft versus leukemia (GvL) effect in myeloid leukemia. We hypothesized that for NK cells to mediate GvL, they must be fully functional via a process termed “licensing” or “education”. Although it has been presumed that NK cell functions (cytotoxicity and cytokine production) develop in parallel through interactions with their class I recognizing inhibitory receptors, new data suggests that this may not be the case. To address this issues we developed a 9-color flow cytometric-based assay to simultaneously measure both CD107a expression and IFNy production by CD56+ NK cells in the context of expression of inhibitory receptors for self-class I human leukocyte antigen (HLA). We tested a cohort of 30 patients who received either unmanipulated (T cell replete) or potently T cell depleted (CD34+ selected) grafts from adult unrelated donors. Thawed peripheral blood mononuclear cells (PBMC) were rested overnight in cytokine free media and then incubated with K562 cells to trigger cytotoxicity and cytokine production. PBMC were stained with CD107a (a surrogate for cytotoxicity), IFNy, CD56, CD3, CD45, CD158a, CD158b, CD158e and CD159a simultaneously. The same normal volunteer and the actual transplant donor were used as positive controls in each assay. Cytotoxicity or IFNy production was calculated as a percentage of the normal positive control. Cytotoxicity was intact but modestly suppressed (∼35%) at 3 months after both T cell deplete and T cell replete HSCT with further recovery of killing at 6 months. By contrast, at 3 months after T cell replete HSCT there was potent and sustained suppression of IFNy production by CD56+ cells (57%±11% suppression, p=0.009). The cohort of patients receiving T cell deplete (CD34-selected) grafts also exhibited significant suppression of IFNy at 3 months after HSCT (73%±9.6%, p=0.018), suggesting that the use of post-transplant immune suppression medications did not explain the effect. Suppression of IFNy production when exposed to targets continued through 6 months post-transplant in both cohorts and was partially restored with low concentrations of IL-15. Cells stimulated overnight with IL-12 and IL-18 produced IFNy at 3 and 6 months. Thus the cells were not globally hyporesponsive, suggesting the defect was based on physiologic interactions with the target. NK cells become educated following engagement of inhibitory receptors (eg. Killer-immunoglobulin-like receptors [KIR]) with self class I HLA. Therefore we compared NK cells that expressed at least one KIR with KIR negative NK cells. At 3 months post transplant, KIR expression had no effect on cytotoxicity. In contrast, KIR positive cells produced significantly higher amounts of IFNy than KIR negative cells at 3 (Figure 1) and 6 (data not shown) months post-transplant. Therefore following HSCT, expression of KIR discriminates a population of NK cells that produce IFNy, but does not correlate with cytotoxicity. While NK cell cytotoxicity is only partially suppressed following HSCT, IFNy production is significantly reduced. Consistent with this we found that while all IFNy producing cells degranulate, only a small fraction of CD107a+ cells also make IFNy. This effect is not a result of post-transplant immune suppression or graft versus host disease, as patients receiving CD34+ selected grafts had neither. Perhaps NKG2A, highly expressed on almost all NK cells early after transplant, selectively mediates education for cytotoxcity. In conclusion, our data shows distinct defects in NK cell education for either cytotoxicity or cytokine production. This highlights the importance of analyzing both cytotoxicity and cytokine production when assessing NK cell function post HSCT. Because of their critical anti-tumor and infection protection roles, methods to enhance broad in vivo NK cell function, such as the use of post-transplant IL-15 administration, are warranted. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2033-2033 ◽  
Author(s):  
Federica Galaverna ◽  
Fabio Guolo ◽  
Daniela Pende ◽  
Alida Dominietto ◽  
Raffaella Meazza ◽  
...  

Abstract Background Natural Killer (NK) cells have been widely studied due to their non-major histocompatibility complex (MHC)-restricted cytotoxicity towards transformed or virally infected target cells. In the setting of hematopoietic stem cell transplantation (HSCT), donor NK cells may be "alloreactive" as their killer immunoglobuline-like receptors (KIRs) do not recognize their ligands on recipient human leukocyte antigen (HLA) class I molecules (i.e. KIR-ligands), leading to NK activation. NK alloreactivity can often occur in haploidentical HSCT (Haplo-HSCT), by means of KIR/KIR-L mismatch in graft versus host (GvH) direction, contributing to graft-versus leukemia (GvL) effect, clearing residual leukemic blasts. In the last decade, several studies have shown that NK cells alloreactivity plays a role in T-depleted Haplo-HSCT leading to higher disease free survival rates for patients transplanted from NK-alloreactive donors; recent studies have also shown that donors having KIR B haplotypes (characterized by the presence of more activating KIR) or expressing KIR2DS1 correlated with a better clinical outcome of transplantation. Thus, these NK cell features might be positively considered in the donor selection strategy. Materials and Methods: We analyzed NK-alloreactivity in the setting of unmanipulated Haplo-HSCT with post-transplant cyclophosphamide for patients affected by acute myeloid leukemia or myelodisplastic syndromes. 101 consecutive patients transplanted from September, 2010 to October, 2014 were enrolled, with the big majority of donors and patients studied for HLA-genotype and KIR. Results: Disease status at HSCT was the most relevant factor affecting outcome (p <0.0001), with 3 y 78% overall survival (OS) and 76% disease free survival (DFS) rates for "early" patients (CR1+CR2, n=61) versus 33% OS and 28% DFS rates for "advanced" patients (CR3 or active disease, n=40). Nor NK-alloreactivity nor the presence of donor KIR-B haplotype nor the presence of donor KIR2DS1 seemed to play a role in preventing leukemia relapse. NK alloreactive patients had DFS rate similar to non-NK alloreactive group (62% vs 59%, p 0.47) with a better, still non-significant trend in OS (72% vs 60%, p 0.14) for NK-alloreactive patients. Similarly, Haplo-HSCT from donors with KIR-B haplotype (with B-content score>=2) or who had KIR2DS1 was not associated with better outcome (p 0.67 and p 0.89, respectively). We observed an high expression of CD56 and inhibitory receptors such as NKG2A on surface of NK cells in post-HSCT samples, suggesting that NK-cell function could be inhibited in unmanipulated haploidentical setting. Conclusions NK alloreactivity seems not to play a role in preventing leukemia relapse in unmanipulated haploidentical transplantation with post-transplantation. The different immunosuppressive approach of this Haplo-HSCT setting compared to T-depleted Haplo-HSCT, with concomitant use of cyclosporine from early transplant days, which has been shown to interact and possibly inhibit NK cells in vivo, and post transplant cyclophosphamide effects, selectively killing activated T-cell and inducing long-term tolerance, could affect NK efficacy. Further studies are needed to better understand the complexity of this intriguing issue, leading to a more complete definition of NK cell functions in this Haplo-HSCT setting. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (7) ◽  
pp. 3489
Author(s):  
Takayuki Morimoto ◽  
Tsutomu Nakazawa ◽  
Ryosuke Matsuda ◽  
Fumihiko Nishimura ◽  
Mitsutoshi Nakamura ◽  
...  

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults. Natural Killer (NK) cells are potent cytotoxic effector cells against tumor cells inducing GBM cells; therefore, NK cell based- immunotherapy might be a promising target in GBM. T cell immunoglobulin mucin family member 3 (TIM3), a receptor expressed on NK cells, has been suggested as a marker of dysfunctional NK cells. We established TIM3 knockout in NK cells, using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). Electroporating of TIM3 exon 2- or exon 5-targeting guide RNA- Cas9 protein complexes (RNPs) inhibited TIM3 expression on NK cells with varying efficacy. T7 endonuclease I mutation detection assays showed that both RNPs disrupted the intended genome sites. The expression of other checkpoint receptors, i.e., programmed cell death 1 (PD1), Lymphocyte-activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and TACTILE (CD96) were unchanged on the TIM3 knockout NK cells. Real time cell growth assays revealed that TIM3 knockout enhanced NK cell–mediated growth inhibition of GBM cells. These results demonstrated that TIM3 knockout enhanced human NK cell mediated cytotoxicity on GBM cells. Future, CRISPR-Cas9 mediated TIM3 knockout in NK cells may prove to be a promising immunotherapeutic alternative in patient with GBM.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


Author(s):  
Ethan G Aguilar ◽  
Cordelia Dunai ◽  
Sean J. Judge ◽  
Anthony Elston Zamora ◽  
Lam T. Khuat ◽  
...  

Natural Killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class I molecules resulting in differential responses upon activation in a process called "licensing" or "arming". NK cells expressing receptors that bind self-MHC are considered licensed due to augmented effector lytic function capability compared to unlicensed subsets. However, we demonstrated unlicensed NK subsets instead positively regulate the adaptive T cell response during viral infections due to localization and cytokine production. We demonstrate here that the differential effects of the two types of NK subsets is contingent on the environment using viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) MCMV leads to a loss of licensing-associated differences as compared to mice with low-dose infection, as the unlicensed NK subset no longer localized in lymph nodes (LN), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled with the phenotypes of both human and mouse NK cells in a HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to effects of subset depletion in T-replete models, the licensed NK cell subsets still dominated anti-viral responses post-HSCT. Overall, our results highlight the intricate tuning of the NK cells and how it impacts overall immune responses with regard to licensing patterns, as it is dependent on the level of stimulation and their activation status.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii194-ii195
Author(s):  
Nazanin Majd ◽  
Maha Rizk ◽  
Solveig Ericson ◽  
Kris Grzegorzewski ◽  
Sharmila Koppisetti ◽  
...  

Abstract Glioblastoma (GBM) is the most aggressive primary brain tumor with dismal prognosis. Recent advances of immunotherapy in cancer have sparked interest in the use of cell therapy for treatment of GBM. Active transfer of Natural Killer (NK) cells is of particular interest in GBM because NK cells are capable of exerting anti-tumor cytotoxicity without the need for antigen presentation and sensitization, processes that are impaired in GBM. CYNK-001 is an allogeneic, off-the-shelf product enriched for CD56+/CD3- NK cells expanded from placental CD34+ cells manufactured by Celularity. Here, we demonstrate in vitro cytotoxicity of CYNK-001 against several GBM lines and its in vivo anti-tumor activity in a U87MG orthotopic mouse model via intracranial administration resulting in 94.5% maximum reduction in tumor volume. We have developed a phase I window-of-opportunity trial of CYNK-001 in recurrent GBM via intravenous (IV) and intratumoral (IT) routes. In the IV cohort, subjects receive cyclophosphamide for lymphodepletion followed by 3-doses of IV CYNK-001 weekly. In the IT cohort, subjects undergo placement of an IT catheter with an ommaya reservoir followed by 3-doses of IT CYNK-001 weekly. Patients are monitored for 28-days after last infusion for toxicity. Once maximum safe dose (MSD) is determined, patients undergo IV or IT treatments at MSD followed by surgical resection and the tumor tissue will be analyzed for NK cell engraftment and persistence. We will utilize a 3 + 3 dose de-escalation design (maximum n=36). Primary endpoint is safety and feasibility. Secondary endpoints are overall response rate, duration of response, time to progression, progression free survival and overall survival. Main eligibility criteria include age ≥18, KPS ≥60, GBM at first or second relapse with a measurable lesion on ≤2mg dexamethasone. This is the first clinical trial to investigate CYNK-001 in GBM and will lay the foundation for future NK cell therapy in solid tumors.


2009 ◽  
Vol 25 (6) ◽  
pp. 603-605 ◽  
Author(s):  
Christopher P. Loo ◽  
Brian R. Long ◽  
Frederick M. Hecht ◽  
Douglas F. Nixon ◽  
Jakob Michaëlsson

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2417 ◽  
Author(s):  
Tram N. Dao ◽  
Sagar Utturkar ◽  
Nadia Atallah Lanman ◽  
Sandro Matosevic

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.


Sign in / Sign up

Export Citation Format

Share Document