scholarly journals The Natural Product β-Escin Targets Cancer and Stromal Cells of the Tumor Microenvironment to Inhibit Ovarian Cancer Metastasis

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3931
Author(s):  
Hilary A. Kenny ◽  
Peter C. Hart ◽  
Kasjusz Kordylewicz ◽  
Madhu Lal ◽  
Min Shen ◽  
...  

The high mortality of OvCa is caused by the wide dissemination of cancer within the abdominal cavity. OvCa cells metastasize to the peritoneum, which is covered by mesothelial cells, and invade into the underlying stroma, composed of extracellular matrices (ECM) and stromal cells. In a study using a three-dimensional quantitative high-throughput screening platform (3D-qHTS), we found that β-escin, a component of horse chestnut seed extract, inhibited OvCa adhesion/invasion. Here, we determine whether β-escin and structurally similar compounds have a therapeutic potential against OvCa metastasis. Different sources of β-escin and horse chestnut seed extract inhibited OvCa cell adhesion/invasion, both in vitro and in vivo. From a collection of 160 structurally similar compounds to β-escin, we found that cardiac glycosides inhibited OvCa cell adhesion/invasion and proliferation in vitro, and inhibited adhesion/invasion and metastasis in vivo. Mechanistically, β-escin and the cardiac glycosides inhibited ECM production in mesothelial cells and fibroblasts. The oral administration of β-escin inhibited metastasis in both OvCa prevention and intervention mouse models. Specifically, β-escin inhibited ECM production in the omental tumors. Additionally, the production of HIF1α-targeted proteins, lactate dehydrogenase A, and hexokinase 2 in omental tumors was blocked by β-escin. This study reveals that the natural compound β-escin has a therapeutic potential because of its ability to prevent OvCa dissemination by targeting both cancer and stromal cells in the OvCa tumor microenvironment.

Author(s):  
Mariana A. Antunes ◽  
Cassia L. Braga ◽  
Tainá B. Oliveira ◽  
Jamil Z. Kitoko ◽  
Ligia L. Castro ◽  
...  

Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) from patients with chronic obstructive pulmonary disease (COPD) appear to be phenotypically and functionally similar to BM-MSCs from healthy sources in vitro, the impact of COPD on MSC metabolism and mitochondrial function has not been evaluated. In this study, we aimed to comparatively characterize MSCs from healthy and emphysematous donors (H-MSCs and E-MSCs) in vitro and to assess the therapeutic potential of these MSCs and their extracellular vesicles (H-EVs and E-EVs) in an in vivo model of severe emphysema. For this purpose, C57BL/6 mice received intratracheal porcine pancreatic elastase once weekly for 4 weeks to induce emphysema; control animals received saline under the same protocol. Twenty-four hours after the last instillation, animals received saline, H-MSCs, E-MSCs, H-EVs, or E-EVs intravenously. In vitro characterization demonstrated that E-MSCs present downregulation of anti-inflammatory (TSG-6, VEGF, TGF-β, and HGF) and anti-oxidant (CAT, SOD, Nrf2, and GSH) genes, and their EVs had larger median diameter and lower average concentration. Compared with H-MSC, E-MSC mitochondria also exhibited a higher respiration rate, were morphologically elongated, expressed less dynamin-related protein-1, and produced more superoxide. When co-cultured with alveolar macrophages, both H-MSCs and E-MSCs induced an increase in iNOS and arginase-1 levels, but only H-MSCs and their EVs were able to enhance IL-10 levels. In vivo, emphysematous mice treated with E-MSCs or E-EVs demonstrated no amelioration in cardiorespiratory dysfunction. On the other hand, H-EVs, but not H-MSCs, were able to reduce the neutrophil count, the mean linear intercept, and IL-1β and TGF-β levels in lung tissue, as well as reduce pulmonary arterial hypertension and increase the right ventricular area in a murine model of elastase-induced severe emphysema. In conclusion, E-MSCs and E-EVs were unable to reverse cardiorespiratory dysfunction, whereas H-EVs administration was associated with a reduction in cardiovascular and respiratory damage in experimental severe emphysema.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3019-3019
Author(s):  
Tomohiro Aoki ◽  
Kazuyuki Shimada ◽  
Akihiko Sakamoto ◽  
Keiki Sugimoto ◽  
Takanobu Morishita ◽  
...  

Abstract Background: Despite remarkable advances of initial treatment in diffuse large B-cell lymphoma (DLBCL), the prognosis of the disease with MYC rearrangement remains poor with a median overall survival of less than 1 year. The application of intensive or targeting treatment failed to show a benefit for the disease, an innovative approach should be thus required to overcome the obstacle of MYC rearrangement. Recent findings revealed that the close interaction of tumor cells with stromal cells in its microenvironment is involved in resistance to chemotherapy, and that tumor microenvironment has been shed light on a potential attractive therapeutic target. Purpose: To overcome poor prognoses of intractable DLBCL with MYC rearrangement, we explored an effective drug targeting tumor microenvironment through the high-throughput drug screening (Sugimoto et al. Sci Rep. 2015). Material and methods: Allpatient samples were experimentally used with written informed consent. To perform drug screening against primary patient lymphoma cells with intractable clinical course,we firstly developed co-culture system of lymphoma cells and stromal cells, which allowed us to culture them in vitro.For this, isolated stromal cells derived from human lymph node were prepared. Then 3,440 compounds mainly containing known pharmacologically active substance or off-patent drugs were screened to identify effective drugs for patient lymphoma cells. The efficacy and mechanism of action of the drug were confirmed by subsequent in vitro and in vivo analyses. Results: Two patient tumor cells with MYC/BCL2 rearrangement were used for the drug screening. Both patients developed refractory diseases within 1 year after diagnosis. In the screening analyses, primary lymphoma cells obtained from lymph node for patient (Pt) #1 were used, and tumor cells from PDX mouse model for Pt #2 were used to validate the result of Pt #1. The both tumor cells could not survive in in vitro monoculture, while the both lymphoma cells could remarkably survive longer in co-culture with stromal cells. Then we performed drug screening against primary tumor cells from Pt #1. Ninety-nine compounds with the viability of tumor cells less than 0.5 were identified, and we validated cell death of these 99 compounds against the other lymphoma cells from Pt #2. Among 10 compounds identified as potentially effective for the both tumor cells, we picked out emetine, which induced cell death against the both cells with an IC50 of 312 nM and 506 nM, respectively. Regarding the effect of emetine on stromal cells, the proliferation and survival was not affected in the concentration of 2 µM emetine whose concentration was used for the screening. However, stromal cells pretreated 0.5 µM emetine decreased a support potential to tumor cells resulting from decreased ATP production and glutathione in tumor cells. In terms of the effect of emetine on tumor cells, the drug induced a G2/M arrest in tumor cells, which resulted in induction of apoptosis. Based on previous finding that emetine suppresses HIF-1a expression, which is one of key regulators glucose metabolisms, we investigated the expression in tumor cells under the treatment of emetine. HIF-1a expression was suppressed in tumor cells as expected; we subsequently analyzed the status of glucose metabolism in tumor cells. The expression of key enzymes including HK2, PDK1, and LDHA were suppressed and ATP production and GLUT1 expression were also suppressed. The serial cascade of the alteration of glucose metabolism including the decreased mitochondrial membrane potential, the alteration of pentose phosphate pathway, and the reduction of NADPH and glutathione leading to the accrual of reactive oxygen species (ROS) was observed under the presence of emetine. In in vivo analyses, significant growth inhibition was observed under the emetine treatment (Figure A and B). Conclusions: Emetine identified by the drug screening is clearly effective for patient lymphoma cells with intractable clinical course in vitro and in vivo. Subsequent analyses regarding the mechanism of action of emetine revealed that the drug affected the both tumor cells and stromal cells in tumor microenvironment through the inhibition of glucose metabolism. Further investigations of the translation to clinic should be warranted. Disclosures Sugimoto: Otsuka Pharmaceutical Co., Ltd.: Employment. Kiyoi:Nippon Shinyaku Co., Ltd.: Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; Eisai Co., Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Phizer Japan Inc.: Research Funding; Yakult Honsha Co.,Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; MSD K.K.: Research Funding; Alexion Pharmaceuticals: Research Funding; Novartis Pharma K.K.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Toyama Chemikal Co.,Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; AlexionpharmaLLC.: Research Funding; JCR Pharmaceutlcals Co.,Ltd.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Celgene Corporation: Consultancy; Zenyaku Kogyo Co.LTD.: Research Funding; Kyowa-Hakko Kirin Co.LTD.: Research Funding; Chugai Pharmaceutical Co. LTD.: Research Funding.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rosario Hervás-Salcedo ◽  
María Fernández-García ◽  
Miriam Hernando-Rodríguez ◽  
Oscar Quintana-Bustamante ◽  
Jose-Carlos Segovia ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) constitute one of the cell types most frequently used in cell therapy. Although several studies have shown the efficacy of these cells to modulate inflammation in different animal models, the results obtained in human clinical trials have been more modest. Here, we aimed at improving the therapeutic properties of MSCs by inducing a transient expression of two molecules that could enhance two different properties of these cells. With the purpose of improving MSC migration towards inflamed sites, we induced a transient expression of the C-X-C chemokine receptor type 4 (CXCR4). Additionally, to augment the anti-inflammatory properties of MSCs, a transient expression of the anti-inflammatory cytokine, interleukin 10 (IL10), was also induced. Methods Human adipose tissue-derived MSCs were transfected with messenger RNAs carrying the codon-optimized versions of CXCR4 and/or IL10. mRNA-transfected MSCs were then studied, first to evaluate whether the characteristic phenotype of MSCs was modified. Additionally, in vitro and also in vivo studies in an LPS-induced inflamed pad model were conducted to evaluate the impact associated to the transient expression of CXCR4 and/or IL10 in MSCs. Results Transfection of MSCs with CXCR4 and/or IL10 mRNAs induced a transient expression of these molecules without modifying the characteristic phenotype of MSCs. In vitro studies then revealed that the ectopic expression of CXCR4 significantly enhanced the migration of MSCs towards SDF-1, while an increased immunosuppression was associated with the ectopic expression of IL10. Finally, in vivo experiments showed that the co-expression of CXCR4 and IL10 increased the homing of MSCs into inflamed pads and induced an enhanced anti-inflammatory effect, compared to wild-type MSCs. Conclusions Our results demonstrate that the transient co-expression of CXCR4 and IL10 enhances the therapeutic potential of MSCs in a local inflammation mouse model, suggesting that these mRNA-modified cells may constitute a new step in the development of more efficient cell therapies for the treatment of inflammatory diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Verônica Fernandes Vianna ◽  
Danielle Cabral Bonfim ◽  
Amanda dos Santos Cavalcanti ◽  
Marco Cury Fernandes ◽  
Suzana Assad Kahn ◽  
...  

Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiationin vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stromain vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics.


2021 ◽  
Vol 31 (3) ◽  
pp. 547-554
Author(s):  
Carmen Alexandra NECULACHI ◽  
◽  
Livia Ioana LETI ◽  
Alexandrina BURLACU ◽  
Mihai Bogdan PREDA ◽  
...  

Mesenchymal stromal cells (MSC) are nonhematopoietic cells with fi broblast-like morphology and multipotent capacity that are widely used in pre-clinical and clinical investigations. Unfortunately, the efficiency of MSC treatment is hindered by the poor survival rate after transplantation at the damaged tissue. The goal of this study was to investigate the fate of MSC exposed to various stimuli mimicking the in vivo microenvironment post transplantation. To this aim, murine bone marrow–derived MSC were stimulated with IFNgama and TNFalfa under low oxygen (hypoxia) or atmospheric (normoxia) conditions for 24 to 72 hours, in order to better mimic an ischemic injury. The results showed that MSC pre-stimulation with TNFalfa and IFNgama enhanced immunosuppressive pathways by over-expression of NOS2, IDO, COX2 and production of NO. However, MSC viability was affected by these two cytokines in dose-dependent and time-dependent manners. Besides, priming with TNFalfa and/or IFNgama under low oxygen concentrations revealed that significantly increased cell mortality rate and decreased NO production. Our data suggest that both hypoxia and infl ammation could impact the cell survival after transplantation and reinforces the necessity of further investigations to better understand MSC behavior after transplantation in order to identify the MSC-based strategies with the highest therapeutic potential.


2021 ◽  
Author(s):  
Jing Huang ◽  
Minrong Li ◽  
Ronghai Deng ◽  
Weiqiang Li ◽  
Meihua Jiang ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are known to be widespread in many tissues and possess a broad spectrum of immunoregulatory properties. They have been used in the treatment of a variety of inflammatory diseases; however, the therapeutic effects are still inconsistent owing to their heterogeneity. Spleen stromal cells have evolved to regulate the immune response at many levels as they are bathed in a complex inflammatory milieu during infection. Therefore, it is unknown whether they have stronger immunomodulatory effects than their counterparts derived from other tissues. Methods Here, using a transgenic mouse model expressing GFP driven by the Nestin (Nes) promoter, Nes-GFP+ cells from bone marrow and spleen were collected. Artificial lymphoid reconstruction in vivo was performed. Cell phenotype, inhibition of T cell inflammatory cytokines, and in vivo therapeutic effects were assessed. Results We observed Nes-GFP+ cells colocalized with splenic stromal cells and further demonstrated that these Nes-GFP+ cells had the ability to establish ectopic lymphoid-like structures in vivo. Moreover, we showed that the Nes-GFP+ cells possessed the characteristics of MSCs. Spleen-derived Nes-GFP+ cells exhibited greater immunomodulatory ability in vitro, and more remarkable therapeutic efficacy in inflammatory diseases, especially inflammatory bowel disease (IBD) than bone marrow-derived Nes-GFP+ cells. Conclusions Overall, our data showed that Nes-GFP+ cells contributed to subsets of spleen stromal populations and possessed the biological characteristics of MSCs with a stronger immunoregulatory function and therapeutic potential than bone marrow-derived Nes-GFP+ cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 613-613
Author(s):  
Sherine F. Elsawa ◽  
Luciana L. Almada ◽  
Steven Ziesmer ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell ◽  
...  

Abstract Abstract 613 Uncontrolled immunoglobulin (Ig) secretion by malignant cells is a characteristic feature of lymphoplasmacytic malignancies and associates with significant morbidity. IL6 has been shown to promote Ig secretion by malignant B cells, however, the mechanisms mediating this cellular event remain elusive. Here, we identified a CCL5 induced pathway that upregulates IL6 secretion in B cell/plasma cell malignancies including Waldenström macroglobulinemia (WM). Characterization of this mechanism revealed that activation of the CCL5 pathway increases IL6 expression and promoter activity in stromal cells (HS-5, Saka and primary stromal cells from WM patients). Conversely, stable RNAi knockdown of the CCL5 receptor CCR3 in stromal cells led to significantly reduced IL6 promoter activity and expression. Further analysis using a combination of bioinformatics analysis, genetic analysis and chromatin immunoprecipitation assays (ChIP) identified GLI2 as the mediator of this CCL5-IL6 functional interaction. CCL5 induces GLI2 expression via activation of the PI3K/AKT pathway. Constitutively active PI3K and AKT mutants increase expression of GLI2 through the canonical NFkB pathway. ChIP assay showed p65 binds to the GLI2 promoter and increases GLI2 levels in stromal cells. Dominant negative molecules antagonizing these pathways effectively blocked CCR3 induction of GLI2 expression. Interestingly, this CCL5-induced pathway was independent of the Hedgehog signaling. Blockade of this cascade using pharmacological or genetic tools did not affect CCL5 activation of GLI2 in stromal cells. To validate the biological significance of this newly identified CCL5-GLI2-IL6 signaling axis in the regulation of IgM secretion, we used an in vitro coculture system and an in vivo mouse model. Coculture of primary WM stromal cells, HS-5 or Saka cells with primary WM malignant cells or BCWM.1, an IgM producing cell line, led to a significant increase in IL6 and IgM secretion. Similar results were obtained in vivo using athymic nu/nu mice subcutaneously injected with BCWM.1 and HS-5 cells. We then confirmed the requirement of GLI2 in vitro and in vivo. We infected HS-5 cells with a lentivirus containing shRNA targeting GLI2 or a scramble control and cocultured them with BCWM.1 cells. Knockdown of GLI2 decreased IL6 and IgM secretion in coculture. This was confirmed in vivo by infecting HS-5 cells or primary WMsc with lentivirus targeting GLI2 or scrambled shRNA and coinjecting with BCWM.1 cells into athymic nu/nu mice. Mice injected with cells lacking GLI2 had lower IgM levels in the serum and tumors compared with mice injected with HS-5 cells with an intact GLI2, further supporting the hypothesis that CCL5 requires an intact GLI2 to increase IL6 and consequently IgM. Finally, we confirmed the importance of this phenomenon in other B cell/plasma cell malignancies such as MGUS and MM. Primary stromal cultures from these neoplasms were infected with lentivirus targeting GLI2 or scrambled shRNA and cocultured with BCWM.1 cells. Similar to WM, there was a significant decrease in IL6 and IgM secretion in the absence of GLI2 suggesting the role of this molecule is conserved in other B cell/plasma cell malignancies. In summary, our data identifies a novel role for GLI2, an effector of the Hedgehog signaling pathway, in mediating the interaction between CCL5 and IL6 in the tumor microenvironment that modulates Ig secretion by malignant B cells. Therefore therapies targeting this signaling axis in the tumor microenvironment might provide efficacy in patients with Ig-mediated diseases. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 299 (6) ◽  
pp. F1288-F1298 ◽  
Author(s):  
Nicoletta Eliopoulos ◽  
Jing Zhao ◽  
Manaf Bouchentouf ◽  
Kathy Forner ◽  
Elena Birman ◽  
...  

Acute kidney injury (AKI) can occur from the toxic side-effects of chemotherapeutic agents such as cisplatin. Bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated wide therapeutic potential often due to beneficial factors they secrete. The goal of this investigation was to evaluate in vitro the effect of human MSCs (hMSCs) secretome on cisplatin-treated human kidney cells, and in vivo the consequence of hMSCs intraperitoneal (ip) implantation in mice with AKI. Our results revealed that hMSCs-conditioned media improved survival of HK-2 human proximal tubular cells exposed to cisplatin in vitro. This enhanced survival was linked to increased expression of phosphorylated Akt (Ser473) and was reduced by a VEGF-neutralizing antibody. In vivo testing of these hMSCs established that ip administration in NOD-SCID mice decreased cisplatin-induced kidney function impairment, as demonstrated by lower blood urea nitrogen levels and higher survival. In addition, blood phosphorous and amylase levels were also significantly decreased. Moreover, hMSCs reduced the plasma levels of several inflammatory cytokines/chemokines. Immunohistochemical examination of kidneys showed less apoptotic and more proliferating cells. Furthermore, PCR indicated the presence of hMSCs in mouse kidneys, which also showed enhanced expression of phosphorylated Akt. In conclusion, our study reveals that hMSCs can exert prosurvival effects on renal cells in vitro and in vivo, suggests a paracrine contribution for kidney protective abilities of hMSCs delivered ip, and supports their clinical potential in AKI.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Kenichi Tamama ◽  
Haruhisa Kawasaki ◽  
Alan Wells

Adult bone marrow multipotential stromal cells (MSCs) hold great promise in regenerative medicine and tissue engineering. However, due to their low numbers upon harvesting, MSCs need to be expanded in vitro without biasing future differentiation for optimal utility. In this concept paper, we focus on the potential use of epidermal growth factor (EGF), prototypal growth factor for enhancing the harvesting and/or differentiation of MSCs. Soluble EGF was shown to augment MSC proliferation while preserving early progenitors within MSC population, and thus did not induce differentiation. However, tethered form of EGF was shown to promote osteogenic differentiation. Soluble EGF was also shown to increase paracrine secretions including VEGF and HGF from MSC. Thus, soluble EGF can be used not only to expand MSC in vitro, but also to enhance paracrine secretion through drug-releasing MSC-encapsulated scaffolds in vivo. Tethered EGF can also be utilized to direct MSC towards osteogenic lineage both in vitro and in vivo.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 901
Author(s):  
Susan L. Lindsay ◽  
Susan C. Barnett

The use of mesenchymal stem/stromal cells (MSCs) for transplant-mediated repair represents an important and promising therapeutic strategy after spinal cord injury (SCI). The appeal of MSCs has been fuelled by their ease of isolation, immunosuppressive properties, and low immunogenicity, alongside the large variety of available tissue sources. However, despite reported similarities in vitro, MSCs sourced from distinct tissues may not have comparable biological properties in vivo. There is accumulating evidence that stemness, plasticity, immunogenicity, and adaptability of stem cells is largely controlled by tissue niche. The extrinsic impact of cellular niche for MSC repair potential is therefore important, not least because of its impact on ex vivo expansion for therapeutic purposes. It is likely certain niche-targeted MSCs are more suited for SCI transplant-mediated repair due to their intrinsic capabilities, such as inherent neurogenic properties. In addition, the various MSC anatomical locations means that differences in harvest and culture procedures can make cross-comparison of pre-clinical data difficult. Since a clinical grade MSC product is inextricably linked with its manufacture, it is imperative that cells can be made relatively easily using appropriate materials. We discuss these issues and highlight the importance of identifying the appropriate niche-specific MSC type for SCI repair.


Sign in / Sign up

Export Citation Format

Share Document