scholarly journals Therapeutic Potential of Niche-Specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 901
Author(s):  
Susan L. Lindsay ◽  
Susan C. Barnett

The use of mesenchymal stem/stromal cells (MSCs) for transplant-mediated repair represents an important and promising therapeutic strategy after spinal cord injury (SCI). The appeal of MSCs has been fuelled by their ease of isolation, immunosuppressive properties, and low immunogenicity, alongside the large variety of available tissue sources. However, despite reported similarities in vitro, MSCs sourced from distinct tissues may not have comparable biological properties in vivo. There is accumulating evidence that stemness, plasticity, immunogenicity, and adaptability of stem cells is largely controlled by tissue niche. The extrinsic impact of cellular niche for MSC repair potential is therefore important, not least because of its impact on ex vivo expansion for therapeutic purposes. It is likely certain niche-targeted MSCs are more suited for SCI transplant-mediated repair due to their intrinsic capabilities, such as inherent neurogenic properties. In addition, the various MSC anatomical locations means that differences in harvest and culture procedures can make cross-comparison of pre-clinical data difficult. Since a clinical grade MSC product is inextricably linked with its manufacture, it is imperative that cells can be made relatively easily using appropriate materials. We discuss these issues and highlight the importance of identifying the appropriate niche-specific MSC type for SCI repair.

2017 ◽  
Vol 26 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Zhijian Cheng ◽  
Dale B. Bosco ◽  
Li Sun ◽  
Xiaoming Chen ◽  
Yunsheng Xu ◽  
...  

Spinal cord injury (SCI) causes functional impairment as a result of the initial injury followed by secondary injury mechanism. SCI provokes an inflammatory response that causes secondary tissue damage and neurodegeneration. While the use of neural stem cell (NSC) engraftment to mitigate secondary injury has been of interest to many researchers, it still faces several limitations. As such, we investigated if NSC-conditioned medium (NSC-M) possesses therapeutic potential for the treatment of SCI. It has been proposed that many of the beneficial effects attributed to stem cell therapies are due to secreted factors. Utilizing primary cell culture and murine models of SCI, we determined that systemic treatment with NSC-M was able to significantly improve motor function and lesion healing. In addition, NSC-M demonstrated significant anti-inflammatory potential in vitro and in vivo, reducing inflammatory cytokine expression in both activated macrophages and injured spinal cord tissues. NSC-M was also able to reduce the expression of inducible nitric oxide synthase (iNOS) within the spleen of injured animals, indicating an ability to reduce systemic inflammation. Thus, we believe that NSC-M offers a possible alternative to direct stem cell engraftment for the treatment of SCI.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


2013 ◽  
Vol 2 (10) ◽  
pp. 731-744 ◽  
Author(s):  
Christopher J. Sontag ◽  
Hal X. Nguyen ◽  
Noriko Kamei ◽  
Nobuko Uchida ◽  
Aileen J. Anderson ◽  
...  

2018 ◽  
Vol 300 ◽  
pp. 247-258 ◽  
Author(s):  
Ioana Goganau ◽  
Beatrice Sandner ◽  
Norbert Weidner ◽  
Karim Fouad ◽  
Armin Blesch

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Elisa Garcia ◽  
Jorge Aguilar-Cevallos ◽  
Raul Silva-Garcia ◽  
Antonio Ibarra

Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.


2020 ◽  
Vol 21 (19) ◽  
pp. 7031
Author(s):  
Zhuo-Hao Liu ◽  
Yin-Cheng Huang ◽  
Chang-Yi Kuo ◽  
Chao-Ying Kuo ◽  
Chieh-Yu Chin ◽  
...  

Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.


Author(s):  
Dasa Cizkova ◽  
Françoise Le Marrec-Croq ◽  
Julien Franck ◽  
Lucia Slovinska ◽  
Ivana Grulova ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Vera Paschon ◽  
Beatriz Cintra Morena ◽  
Felipe Fernandes Correia ◽  
Giovanna Rossi Beltrame ◽  
Gustavo Bispo dos Santos ◽  
...  

Abstract During the progression of the neurodegenerative process, mitochondria participates in several intercellular signaling pathways. Voltage-dependent anion-selective channel 1 (VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary cell death, a secondary response that comprises the release of pro-inflammatory molecules triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor functions. Here, we investigated the functional role of VDAC1 in the neurodegeneration triggered by SCI. We first determined that in vitro targeted ablation of VDAC1 by specific morpholino antisense nucleotides (MOs) clearly promotes neurite retraction, whereas a pharmacological blocker of VDAC1 oligomerization (4, 4′-diisothiocyanatostilbene-2, 2′-disulfonic acid, DIDS), does not cause this effect. We next determined that, after SCI, VDAC1 undergoes conformational changes, including oligomerization and N-terminal exposition, which are important steps in the triggering of apoptotic signaling. Considering this, we investigated the effects of DIDS in vivo application after SCI. Interestingly, blockade of VDAC1 oligomerization decreases the number of apoptotic cells without interfering in the neuroinflammatory response. DIDS attenuates the massive oligodendrocyte cell death, subserving undisputable motor function recovery. Taken together, our results suggest that the prevention of VDAC1 oligomerization might be beneficial for the clinical treatment of SCI.


2017 ◽  
Vol 44 (3) ◽  
pp. 1224-1241 ◽  
Author(s):  
Jichen He ◽  
Jinmin Zhao ◽  
Xiaoming Peng ◽  
Xiongzhi Shi ◽  
Shaohui Zong ◽  
...  

Background/Aims: The pathophysiology of spinal cord injury (SCI) results in serious damage to the human body via an increase in the secondary biological processes imposed by activated astrocytes. Abnormal expression of microRNAs after SCI has become a potential research focus. However, the underlying mechanisms are poorly understood. Methods: SCI models were established in rats using Allen’s method, and the BBB scoring method was employed to assess locomotor function. Lentivirus was used to infect rat astrocytes and SCI rats. Real-time PCR and antibody chip were used to measure gene expression and cytokine secretion. Western blot analysis was employed to detect protein expression. HE staining was used to assess the histological changes in SCI. The immunohistochemical staining of A20 and p-NF-κB in SCI was also analyzed. Results: The in vitro experiment showed that miR-136-5p up-regulated the expression of p-NF-κB by down-regulating the expression of A20 so that astrocytes produced inflammatory factors and chemokines. The in vivo experiment indicated that overexpressed miR-136-5p promoted the production of inflammatory factors, chemokines and p-NF-κB in SCI rats, whereas it inhibited the expression of A20 protein and increased inflammatory cell infiltration and injuries in the spinal cord. Conclusion: The current findings indicate that silencing miR-136-5p effectively decreased inflammatory factors and chemokines and protected the spinal cord via NF-κB/A20 signaling in vivo and in vitro. In contrast, overexpression of miR-136-5p had the opposite effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Hengshuo Hu ◽  
Nan Xia ◽  
Jiaquan Lin ◽  
Daoyong Li ◽  
Chuanjie Zhang ◽  
...  

Spinal cord injury (SCI) is a traumatic disease that can cause severe nervous system dysfunction. SCI often causes spinal cord mitochondrial dysfunction and produces glucose metabolism disorders, which affect neuronal survival. Zinc is an essential trace element in the human body and plays multiple roles in the nervous system. This experiment is intended to evaluate whether zinc can regulate the spinal cord and neuronal glucose metabolism and promote motor functional recovery after SCI. Then we explore its molecular mechanism. We evaluated the function of zinc from the aspects of glucose uptake and the protection of the mitochondria in vivo and in vitro. The results showed that zinc elevated the expression level of GLUT4 and promoted glucose uptake. Zinc enhanced the expression of proteins such as PGC-1α and NRF2, reduced oxidative stress, and promoted mitochondrial production. In addition, zinc decreased neuronal apoptosis and promoted the recovery of motor function in SCI mice. After administration of AMPK inhibitor, the therapeutic effect of zinc was reversed. Therefore, we concluded that zinc regulated the glucose metabolism of the spinal cord and neurons and promoted functional recovery after SCI through the AMPK pathway, which is expected to become a potential treatment strategy for SCI.


Sign in / Sign up

Export Citation Format

Share Document