scholarly journals Preparation and Characterization of Photoactive Anatase TiO2 from Algae Bloomed Surface Water

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 452 ◽  
Author(s):  
Sayed Mukit Hossain ◽  
Heeju Park ◽  
Hui-Ju Kang ◽  
Jong Beom Kim ◽  
Leonard Tijing ◽  
...  

The purpose of the study was to effectively treat algae bloomed water while using a Ti-based coagulant (TiCl4) and recover photoactive novel anatase TiO2 from the flocculated sludge. Conventional jar tests were conducted in order to evaluate the coagulation efficiency, and TiCl4 was found superior compared to commercially available poly aluminum chloride (PAC). At a dose of 0.3 g Ti/L, the removal rate of turbidity, chemical oxygen demand (COD), and total phosphorus (TP) were measured as 99.8%, 66.7%, and 96.9%, respectively. Besides, TiO2 nanoparticles (NPs) were recovered from the flocculated sludge and scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and X-ray diffraction (XRD) analysis confirmed the presence of only anatase phase. The recovered TiO2 was found to be effective in removing gaseous CH3CHO and NOx under UV-A lamp at a light intensity of 10 W/m2. Additionally, the TiO2 mixed mortar blocks that were prepared in this study successfully removed atmospheric nitrogen oxide (NOx) under UV irradiance. This study is one of the first to prepare anatase TiO2 from flocculated algal sludge and it showed promising results. Further research on this novel TiO2 concerning internal chemical bonds and shift in the absorbance spectrum could explore several practical implications.

Author(s):  
S. Louki ◽  
N. Touach ◽  
A. Benzaouak ◽  
V. M. Ortiz-Martínez ◽  
M. J. Salar-García ◽  
...  

This work investigates the photocatalytic activity of new ferroelectric material with formula (Li0.95Cu0.15)Ta0.76Nb0.19O3 (LT76) in a single chamber microbial fuel cell (MFC) and compares its performance with the similar photocatalyst (Li0.95Cu0.15)Ta0.57Nb0.38O3 (LT57). The photocatalysts LT76 and LT57 were synthesized by ceramic route under the same conditions, with the same starting materials. The ratio Ta/Nb was fixed at 4.0 and 1.5 for LT76 and LT57, respectively. These phases were characterized by different techniques including X-ray diffraction (XRD), transmission electronic microscopy (TEM), particle size distribution (PSD), differential scanning calorimetry (DSC), and ultraviolet (UV)–visible (Vis). The new photocatalyst LT76 presents specific surface area of 0.791 m2/g and Curie temperature of 1197 °C. The photocatalytic efficiency of this material is assessed in terms of wastewater treatment and electricity generation by power density and removal rate of chemical oxygen demand (COD) in the presence of a light source. The values of maximum power density and COD removal were 19.77 mW/m3 and 93%, respectively, for LT76.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


Author(s):  
M.T. Blatchford ◽  
A.J. Horlock ◽  
D.G. McCartney ◽  
P.H. Shipway ◽  
J.V. Wood

Abstract In this paper, the production of NiCr-TiC powder by SHS, suitable for HVOF spraying, is discussed together with results on the microstructure and coating properties. Compacts for SHS were prepared by mixing elemental Ti and C with pre-alloyed Ni-20wt.% Cr powder to give an overall composition of 35wt.% NiCr and 65wt.% TiC. These were then ignited and a self-sustaining reaction proceeded to completion. Reacted compacts were crushed, sieved, and classified to give feedstock powders in size ranges of 10-45 µm and 45-75 µm. All powder was characterized prior to spraying based on particle size distribution, x-ray diffraction (XRD), and scanning electron microscopy (SEM/EDS). Thermal spraying was performed using both H2 and C3H6 as fuel gases in a UTP/Miller Thermal HVOF system. The resulting coatings were characterized by SEM and XRD analysis, and the microstructures correlated with powder size and spray conditions. Abrasive wear was determined by a modified 'dry sand rubber wheel' (DSRW) test and wear rates were measured. It has been found that wear rates comparable to those of HVOF sprayed WC-17wt% Co coatings can be achieved.


2015 ◽  
Vol 1131 ◽  
pp. 215-220
Author(s):  
Emmanuel Nyambod Timah ◽  
Buagun Samran ◽  
Udom Tipparach

TiO2nanotubes were successfully synthesized by anodization method of Ti foils. The electrolyte was composed of ethylene glycol (EG), ammonium fluoride (0.3%wt NH4F) and de-ionized water (2% vol H2O). A constant DC power supply of 50 V was used during anodization with anodizing times of 1 hour, 2 hours, 4 hours and 6 hours. The samples were annealed at 450 °C for 2 hours. The TiO2nanotubes were studied by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Structural analysis revealed the presence of pure Ti, and the crystalline anatase phase due to transformation of amorphous TiO2after annealing. The morphology of TiO2nanotube sizes showed an increase in tube diameter with anodizing time from approximately 50 nm to 200 nm. However, the efficiency of dye-sensitized solar cells increased with anodizing times up to a maximum of 5.74 % for anodizing time of 4 hours.


2011 ◽  
Vol 183-185 ◽  
pp. 2254-2257
Author(s):  
Ying Wei Wang ◽  
Yu Fei Li ◽  
Pei Han Yang

Nonmetal (S, P) doped titania nanoparticles were synthesized by a one step hydrothermal method. These samples were calcined with different temperature, the sample exist in anatase phase has much higher photocatalytic activity for methylene blue (MB) degradation. The visible response and the higher UV activity of the different nonmetal doped TiO2make it possible to utilize solar energy efficiently to execute photocatalysis processes. The resulting materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), etc. It can conclude the nonmetal doping TiO2proves to be more suitable to improve the photocatalytic performance.


2012 ◽  
Vol 616-618 ◽  
pp. 1732-1735 ◽  
Author(s):  
Xi Hai Shen ◽  
Yu Gang Zheng ◽  
Liang Chang ◽  
Jin Jia Guo ◽  
Song Bin Ye ◽  
...  

Aiming at the glass-to-metal seals serving in the Solar Thermal Power (STP), glass-to-metal vacuum brazed joints were studied. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were performed to examine the microstructure and element contents of interface seam on the glass-to-metal vacuum brazed joints. Also, the compositional concentration of the interface seam was measured by using energy dispersive spectroscopy (EDS).


2012 ◽  
Vol 626 ◽  
pp. 425-429 ◽  
Author(s):  
N.N. Hafizah ◽  
Mohamed Zahidi Musa ◽  
Mohamad Hafiz Mamat ◽  
M. Rusop

In this study, TiO2nanopowder was synthesized via a sol-gel grinding method. The effects of TiO2precursor concentration of TiO2nanopowder were investigated. The TiO2nanopowder obtained were characterized using X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) for their structural properties. From the calculation of the crystallite size in XRD, the size of the nanoparticles obtained is 49.55 nm at the highest TiO2precursor concentration. In contrast, at the lower concentration of 0.4 molar give the cryatallite size of 12.84 nm. Further, XRD and Raman spectrum results confirmed the TiO2nanopowder obtain composed of only anatase phase. The FESEM micrographs of TiO2nanopowder also were discussed in this paper.


2010 ◽  
Vol 173 ◽  
pp. 102-105 ◽  
Author(s):  
Khairul Arifah Saharudin ◽  
Srimala Sreekantan

In this paper, anodization of Ti foil was carried out in ethylene glycol (EG) containing 5 wt% NH4F solution and 0 to 1.5 wt% of water at 50 V for 60 min. The pH of the bath was kept constant at ~pH7. The crystal structure was studied by X-Ray Diffraction (XRD) analysis, and the morphology was observed via field emission scanning electron microscopy (FESEM). TiO2 nanotube with aspect ratio of 100 was obtained in EG containing less than 1wt % water. The nanotubes wall was very smooth. Increasing the water content > 1wt % results in short nanotubes of approximately 6.2μm with aspect ratio of 62. As anodized, nanotubes were amorphous and annealed at 400 °C promote 100 % anatase phase. Photocatalytic activity of the nanotubes produced at different water content was also evaluated by the degradation of methyl orange and the detail of the observation was discussed thoroughly in this paper.


2012 ◽  
Vol 581-582 ◽  
pp. 570-573
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
Jian Long Wang ◽  
He Zhang Chen ◽  
...  

The LiFe0.98Ni0.01Nb0.01PO4/C was synthesized by carbon reduction route using FePO4•2H2O as precursor. The LiFe0.98Ni0.01Nb0.01PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis, SEM and TEM images show that sample has the good crystal structure, morphology and carbon coating. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 164.6 mAh•g−1 at current density of 0.1 C. The capacity retention reaches 99.8% after 100 cycles at 0.1C.


2010 ◽  
Vol 97-101 ◽  
pp. 1091-1096
Author(s):  
Dong Fang Han ◽  
Qun Tang ◽  
Qing Meng Zhang ◽  
Lei Wang ◽  
Ju Du

The structure and property of Ce-doped Ba0.2Sr0.8TiO3 (BST) were investigated as a function of Ce content. The density experiment results confirmed that increasing the Ce doping ratio caused the decrease in shrinkage factor of BST in the sintering procedure. Additionally, both Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis showed that the grain size of Ce-doped BST was dependent on the Ce content. Further more, the dielectric constant and dielectric loss had a curve relationship with increasing Ce content. The improvement of the electrical properties of Ce doping BST may be related to the decrease in the concentration of oxygen vacancies. According to the research, the diameter of grain, the dielectric constant and loss factor of the 1mol% Ce-doped Ba0.2Sr0.8TiO3 were 500nm, 365.8 and 0.0063, respectively.


Sign in / Sign up

Export Citation Format

Share Document