scholarly journals Study of Phase Transitions Occurring in a Catalytic System of ncFe-NH3/H2 with Chemical Potential Programmed Reaction (CPPR) Method Coupled with In Situ XRD

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Ewa A. Ekiert ◽  
Bartłomiej Wilk ◽  
Zofia Lendzion-Bieluń ◽  
Rafał Pelka ◽  
Walerian Arabczyk

Nitriding of nanocrystalline iron and reduction of nanocrystalline iron nitride with gaseous mixtures of hydrogen with ammonia were studied at 375 °C and atmospheric pressure using the chemical potential programmed reaction (CPPR) method coupled with in situ XRD. In this paper, a series of phase transitions occurring during the processes is shown, and a detailed analysis of the phase composition and the structure of the material is given. The influence of a variable nitriding potential on the lattice parameters of α-Fe, γ′-Fe4N, and ε-Fe3-2N phases is shown. The α phase interplanar space changes irrelevantly in the one phase area but decreases linearly with average increases in crystallite size when α→γ′ transformation occurs. The nanocrystallite size distributions (nCSDs) were determined, with nCSD of the α phase for nitriding and nCSD of the ε phase for reduction. The reduction of the ε phase can occur directly to α or indirectly with an intermediate step of γ′ formation as a result of ε→γ′→α transformations. The determining factor in the reducing process method is the volume of ε phase nanocrystallites. Those with V < 90,000 nm3 undergo direct transformation ε→αFe(N), and V > 90,000 nm3 transforms to αFe(N) indirectly. It was determined at what value of nitriding potential which fraction of the ε phase nanocrystallites starts to reduce

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1242
Author(s):  
Bartłomiej Wilk ◽  
Artur Błachowski ◽  
Zofia Lendzion-Bieluń ◽  
Walerian Arabczyk

Nanocrystalline iron nitriding and the reduction of nanocrystalline iron nitrides in steady states at 350 °C are described using the chemical potential programmed reaction (CPPR), thermogravimetry (TG), 57Fe Mössbauer spectroscopy (MS), and X-ray diffraction (XRD) methods. It was determined that during the process of nitriding of nanocrystalline iron, larger nanocrystallites formed the γ’ phase and the smallest nanocrystallites (about 4%) were transformed into the α” phase. Both phases were in chemical equilibrium, with the gas phase at the temperature of 350 °C. Stable iron nitride α” was also formed in the ε iron nitride reduction process. Taking the α” phase in the system of nanocrystalline Fe-NH3-H2 into account, it was found that at certain nitriding potentials in the chemical equilibrium state, three solid phases in the nitriding process and four solid phases in the reduction process may coexist. It was also found that the nanocrystallites of ε iron nitride in their reduction process were transformed according to two mechanisms, depending on their size. Larger nanocrystallites of iron nitride ε were transformed into the α-iron phase through iron nitride γ’, and smaller nanocrystallites of ε nitride went through iron nitride α”. In the passivation process of nanocrystalline iron and/or nanocrystalline iron nitrides, amorphous phases of iron oxides and/or iron oxynitrides were formed on their surface.


1997 ◽  
Vol 502 ◽  
Author(s):  
Ivan Bozovic ◽  
J. N. Eckstein ◽  
Natasha Bozovic ◽  
J. O'Donnell

ABSTRACTReal-time, in-situ surface monitoring by reflection high-energy electron diffraction (RHEED) has been the key enabling component of atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) of complex oxides. RHEED patterns contain information on crystallographic arrangements and long range order on the surface; this can be made quantitative with help of numerical simulations. The dynamics of RHEED patterns and intensities reveal a variety of phenomena such as nucleation and dissolution of secondary-phase precipitates, switching between growth modes (layer-by-layer, step-flow), surface phase transitions (surface reconstruction, roughening, and even phase transitions induced by the electron beam itself), etc. Some of these phenomena are illustrated here, using as a case study our recent growth of atomically smooth a-axis oriented DyBa2Cu3O7 films.


Vacuum ◽  
2012 ◽  
Vol 86 (6) ◽  
pp. 785-788 ◽  
Author(s):  
Jan Riha ◽  
Pavol Sutta ◽  
Andrej Vincze ◽  
Rostislav Medlin

Small Methods ◽  
2021 ◽  
Vol 5 (9) ◽  
pp. 2170042
Author(s):  
Tobias Meyer ◽  
Birte Kressdorf ◽  
Vladimir Roddatis ◽  
Jörg Hoffmann ◽  
Christian Jooss ◽  
...  

2011 ◽  
Vol 158 (8) ◽  
pp. A890 ◽  
Author(s):  
Kevin Rhodes ◽  
Roberta Meisner ◽  
Yoongu Kim ◽  
Nancy Dudney ◽  
Claus Daniel

1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


2013 ◽  
Vol 203-204 ◽  
pp. 71-76
Author(s):  
Sławomir Kołodziej ◽  
Joanna Kowalska ◽  
Wiktoria Ratuszek ◽  
Wojciech Ozgowicz ◽  
Krzysztof Chruściel

The aim of this work was the microstructure and texture analysis of a deformed via cold-rolling 24.5Mn-3.5Si-1.5Al-Ti-Nb TWIP/TRIP type steel. It was found, that during cold plastic deformation a phase transformation of austenite into martensite takes place. The transformation progress was confirmed by the microscopic investigations. The texture of austenite is characterized by a limited α1=||RD fibre and the γ=||ND fibre. The texture of austenite changed with increasing deformation rate. In the texture of deformed austenite the strongest orientation is the {110} Goss orientation, which belongs to the α=||ND orientation fibre. During cold plastic deformation γ→ε and γ→ε→α’ phase transformations as well as the deformation of γ, ε and α’ phases are taking place in the steel. The formed ε phase (hexagonal structure) also possesses a distinct texture.


MRS Advances ◽  
2018 ◽  
Vol 3 (11) ◽  
pp. 563-567 ◽  
Author(s):  
Quentin Altemose ◽  
Katrina Raichle ◽  
Brittani Schnable ◽  
Casey Schwarz ◽  
Myungkoo Kang ◽  
...  

ABSTRACTTransparent optical ZnO–Bi2O3–B2O3 (ZBB) glass-ceramics were created by the melt quenching technique. In this work, a melt of the glass containing stoichiometric ratios of Zn/Bi/B and As was studied. Differential scanning calorimeter (DSC) measurements was used to measure the thermal behavior. VIS/NIR transmission measurements were used to determine the transmission window. X-ray diffraction (XRD) was used to determine crystal phase. In this study, we explore new techniques and report a detailed study of in-situ XRD of the ZBB composition in order to correlate nucleation temperature, heat treatment temperature, and heat treatment duration with induced crystal phase.


Sign in / Sign up

Export Citation Format

Share Document