scholarly journals Waste Animal Bones as Catalysts for Biodiesel Production; A Mini Review

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 630
Author(s):  
Fayaz Hussain ◽  
Saad Alshahrani ◽  
Muhammad Mujtaba Abbas ◽  
Haris Mahmood Khan ◽  
Asif Jamil ◽  
...  

Slaughterhouse waste is considered to be an emerging issue because of its disposal cost. As an alternative, it would be a great prospect for the bioeconomy society to explore new usages of these leftover materials. As per food safety rules mentioned by EU legislation, all bone waste generated by slaughterhouses ought to be disposed of by rendering. The huge quantity of worldwide bone waste generation (130 billion kilograms per annum) is an environmental burden if not properly managed. The waste animal bones can be efficiently employed as a heterogeneous catalyst to produce biodiesel. This mini review summarized the recent literature reported for biodiesel generation using waste animal bones derived heterogeneous catalyst. It discusses the sources of bone waste, catalyst preparation methods, particularly calcination and its effects, and important characteristics of bones derived catalyst. It suggests that catalysts extracted from waste animal bones have suitable catalytic activity in transesterification of different oil sources to generate a good quality biodiesel.

2012 ◽  
Vol 445-446 ◽  
pp. 76-82 ◽  
Author(s):  
José Renato de Oliveira Lima ◽  
Yussra Abdul Ghani ◽  
Rondenelly B. da Silva ◽  
Francisco Marcos C. Batista ◽  
Rafael Admar Bini ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 872-881 ◽  
Author(s):  
Muhammad Farooq ◽  
Anita Ramli ◽  
Abdul Naeem ◽  
Muhammad Saleem khan

The catalytic activity of different γ-Al2O3–MgO supported bifunctional solid catalysts was successfully evaluated by carrying out simultaneous esterification–transesterification in waste cooking oil.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1215
Author(s):  
Haris Mahmood Khan ◽  
Tanveer Iqbal ◽  
Saima Yasin ◽  
Chaudhry Haider Ali ◽  
Muhammad Mujtaba Abbas ◽  
...  

In this modern era, it has become essential to transform waste materials into valuables because of their excessive availability, along with achieving the targets of environmental protocols and waste management policies. With a growing population, the utilization and consumption of agricultural products have been increased extensively. In addition, it has increased the probability of agricultural waste generation. Waste produced from agricultural sources is considered as a viable source for synthesizing economical and ecofriendly catalysts and suitable ways for its disposal are sought. This study is targeted at agricultural waste-derived heterogeneous catalysts, which have been effectively employed for biodiesel generation. The types of agricultural waste, catalyst synthesis techniques, recent literature stated for agricultural waste-derived catalysts to produce biodiesel, the elemental composition and catalytic activity of agricultural waste ashes, the effect of reaction parameters to maximize biodiesel yield and catalyst reusability have been discussed. This work concludes that catalysts derived from agricultural waste are efficient in transesterification reaction, and they are easy to produce, and are cheap and ecofriendly. Moreover, this study encourages researchers to see the options for unexplored agricultural waste, which can be potentially converted into useful materials


1992 ◽  
Vol 57 (11) ◽  
pp. 2241-2247 ◽  
Author(s):  
Tomáš Hochmann ◽  
Karel Setínek

Solid acid catalysts with acid strength of -14.52 < H0 < -8.2 were prepared by sulfate treatment of the samples of boehmite calcined at 105-800 °C. Two preparation methods were used: impregnation of the calcined boehmite with 3.5 M H2SO4 or mixing of the boehmite samples with anhydrous aluminum sulfate, in both cases followed by calcination in nitrogen at 650 °C. The catalysts were characterized by measurements of surface area, adsorption of pyridine and benzene, acid strength measurements by the indicator method and by catalytic activity tests in the isomerization of cyclohexene, p-xylene and n-hexane. Properties of the catalysts prepared by both methods were comparable.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 812
Author(s):  
Hoang Chinh Nguyen ◽  
My-Linh Nguyen ◽  
Chia-Hung Su ◽  
Hwai Chyuan Ong ◽  
Horng-Yi Juan ◽  
...  

Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat through the (trans)esterification process. To enhance the reaction efficiency and simplify the production process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which are (bio)synthesized from various natural sources. This review summarizes the latest findings on these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disadvantages of these catalysts are also discussed. These bio-based catalysts show a promising future and can be further used as a renewable catalyst for sustainable biodiesel production.


2021 ◽  
pp. 77-118
Author(s):  
Anjana P Anantharaman ◽  
Niju Subramania Pillai

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 656
Author(s):  
Henrietta Kovács ◽  
Krisztina Orosz ◽  
Gábor Papp ◽  
Ferenc Joó ◽  
Henrietta Horváth

Na2[Ir(cod)(emim)(mtppts)] (1) with high catalytic activity in various organic- and aqueous-phase hydrogenation reactions was immobilized on several types of commercially available ion-exchange supports. The resulting heterogeneous catalyst was investigated in batch reactions and in an H-Cube flow reactor in the hydrogenation of phenylacetylene, diphenylacetylene, 1-hexyne, and benzylideneacetone. Under proper conditions, the catalyst was highly selective in the hydrogenation of alkynes to alkenes, and demonstrated excellent selectivity in C=C over C=O hydrogenation; furthermore, it displayed remarkable stability. Activity of 1 in hydrogenation of levulinic acid to γ-valerolactone was also assessed.


Author(s):  
Hang Xu ◽  
Sho Yamaguchi ◽  
Takato Mitsudome ◽  
Tomoo Mizugaki

Copper nitride (Cu3N) was used as a heterogeneous catalyst for the hydroxylation of aryl halides under ligand-free conditions. The cubic Cu3N nanoparticles showed high catalytic activity, comparable to those of...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Sang-Ho Chung ◽  
Adrian Ramirez ◽  
Tuiana Shoinkhorova ◽  
Ildar Mukhambetov ◽  
Edy Abou-Hamad ◽  
...  

The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica–magnesia (SiO2–MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2–MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2–MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2–MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.


2015 ◽  
Vol 39 (8) ◽  
pp. 5960-5965 ◽  
Author(s):  
Praveen K. Khatri ◽  
Mounika Aila ◽  
Jyoti Porwal ◽  
Savita Kaul ◽  
Suman L. Jain

Cation exchanger INDION 130 modified with vanadyl cations was found to be readily prepared and reusable and exhibited higher catalytic activity than the homogeneous oxo-vanadium catalyst for epoxidation of fatty compounds.


Sign in / Sign up

Export Citation Format

Share Document