scholarly journals Application of Agricultural Waste as Heterogeneous Catalysts for Biodiesel Production

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1215
Author(s):  
Haris Mahmood Khan ◽  
Tanveer Iqbal ◽  
Saima Yasin ◽  
Chaudhry Haider Ali ◽  
Muhammad Mujtaba Abbas ◽  
...  

In this modern era, it has become essential to transform waste materials into valuables because of their excessive availability, along with achieving the targets of environmental protocols and waste management policies. With a growing population, the utilization and consumption of agricultural products have been increased extensively. In addition, it has increased the probability of agricultural waste generation. Waste produced from agricultural sources is considered as a viable source for synthesizing economical and ecofriendly catalysts and suitable ways for its disposal are sought. This study is targeted at agricultural waste-derived heterogeneous catalysts, which have been effectively employed for biodiesel generation. The types of agricultural waste, catalyst synthesis techniques, recent literature stated for agricultural waste-derived catalysts to produce biodiesel, the elemental composition and catalytic activity of agricultural waste ashes, the effect of reaction parameters to maximize biodiesel yield and catalyst reusability have been discussed. This work concludes that catalysts derived from agricultural waste are efficient in transesterification reaction, and they are easy to produce, and are cheap and ecofriendly. Moreover, this study encourages researchers to see the options for unexplored agricultural waste, which can be potentially converted into useful materials

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 630
Author(s):  
Fayaz Hussain ◽  
Saad Alshahrani ◽  
Muhammad Mujtaba Abbas ◽  
Haris Mahmood Khan ◽  
Asif Jamil ◽  
...  

Slaughterhouse waste is considered to be an emerging issue because of its disposal cost. As an alternative, it would be a great prospect for the bioeconomy society to explore new usages of these leftover materials. As per food safety rules mentioned by EU legislation, all bone waste generated by slaughterhouses ought to be disposed of by rendering. The huge quantity of worldwide bone waste generation (130 billion kilograms per annum) is an environmental burden if not properly managed. The waste animal bones can be efficiently employed as a heterogeneous catalyst to produce biodiesel. This mini review summarized the recent literature reported for biodiesel generation using waste animal bones derived heterogeneous catalyst. It discusses the sources of bone waste, catalyst preparation methods, particularly calcination and its effects, and important characteristics of bones derived catalyst. It suggests that catalysts extracted from waste animal bones have suitable catalytic activity in transesterification of different oil sources to generate a good quality biodiesel.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3950
Author(s):  
Hoora Mazaheri ◽  
Hwai Chyuan Ong ◽  
Zeynab Amini ◽  
Haji Hassan Masjuki ◽  
M. Mofijur ◽  
...  

Biodiesel is a clean, renewable, liquid fuel that can be used in existing diesel engines without modification as pure or blend. Transesterification (the primary process for biodiesel generation) via heterogeneous catalysis using low-cost waste feedstocks for catalyst synthesis improves the economics of biodiesel production. Heterogeneous catalysts are preferred for the industrial generation of biodiesel due to their robustness and low costs due to the easy separation and relatively higher reusability. Calcium oxides found in abundance in nature, e.g., in seashells and eggshells, are promising candidates for the synthesis of heterogeneous catalysts. However, process improvements are required to design productive calcium oxide-based catalysts at an industrial scale. The current work presents an overview of the biodiesel production advancements using calcium oxide-based catalysts (e.g., pure, supported, and mixed with metal oxides). The review discusses different factors involved in the synthesis of calcium oxide-based catalysts, and the effect of reaction parameters on the biodiesel yield of calcium oxide-based catalysis are studied. Further, the common reactor designs used for the heterogeneous catalysis using calcium oxide-based catalysts are explained. Moreover, the catalytic activity mechanism, challenges and prospects of the application of calcium oxide-based catalysts in biodiesel generation are discussed. The study of calcium oxide-based catalyst should continue to be evaluated for the potential of their application in the commercial sector as they remain the pivotal goal of these studies.


2019 ◽  
Vol 967 ◽  
pp. 150-154 ◽  
Author(s):  
Yoel Pasae ◽  
Lyse Bulo ◽  
Karel Tikupadang ◽  
Titus Tandi Seno

The use of heterogeneous catalysts in the biodiesel production process provides advantages because it is easier in the catalyst separation process. One type of heterogeneous catalyst that can be used is CaO. The raw materials for CaO are abundant in nature and can be obtained from various sources including agricultural waste such as eggshells. The alkalinity level of CaO can be increased to super baser CaO through the activation process of CaO by using an ammonium carbonate solution. Super base CaO which is used as a catalyst for transesterification reaction in the production of biodiesel made from palm oil. This research was carried out by varying the reaction time starting from 1, 2 and 3 hours. The highest yield was obtained at 3 hours reaction time of 93.92%. The results of the analysis of the physical properties of biodiesel obtained density in the range 853-854 kg/m3, kinematic viscosity 3.24-3.26 mm2/s (cSt), saponification number 193-201 mg-KOH/g biodiesel and acid number 0.3-0.7 mg-KOH/g. These characteristics meet the biodiesel quality standards based on Indonesian National Standard (SNI) 04-7182-2015. Thus the use of super base CaO from eggshells can be used as a catalyst in the process of biodiesel production.


Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1271
Author(s):  
Wei Liu ◽  
Fang Wang ◽  
Pengcheng Meng ◽  
Shuang-Quan Zang

Zr-MOF (UiO-66) catalysts PTSA/UiO-66 and MSA/UiO-66 bearing supported sulfonic acids (p-toluenesulfonic acid and methanesulfonic acid, respectively) were prepared through a simple impregnation approach. The UiO-66-supported sulfonic acid catalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, fourier transform infrared spectroscopy (FT-IR) and elemental analysis. The prepared heterogeneous acid catalysts had excellent stability since their crystalline structure was not changed compared with that of the original UiO-66. Zr-MOF MSA/UiO-66 and PTSA/UiO-66 were next successfully used as heterogeneous acid catalysts for the esterification of biomass-derived fatty acids (e.g., palmitic acid, oleic acid) with various alcohols (e.g., methanol, n-butanol). The results demonstrated that both of them had high activity and excellent reusability (more than nine successive cycles) in esterification reactions. Alcohols with higher polarity (e.g., methanol) affected the solid catalyst reusability slightly, while alcohols with moderate or lower polarity (e.g., n-butanol, n-decanol) had no influence. Thus, these developed sulfonic acids-supported metal-organic frameworks (UiO-66) have the potential for use in biodiesel production with excellent reusability.


Author(s):  
Jiraporn Kaewdiew ◽  
Rameshprabu Ramaraj ◽  
Sirichai Koonaphapdeelert ◽  
Natthawud Dussadee

In 2014-2015, there was approximately 26,823.44 x106 kg of the residue leftover from agricultural products in Northern Thailand and roughly 18,943.57x106 kg or 70.62% were left unutilized. The aim of this research was to survey and calculate the proportion of agricultural area and products as well as their corresponding waste towards potential of biogas production using biochemical methane potential (BMP) method. The results showed that rice straw was the most promising feedstock for methane production with the highest biogas yield of 363 mlN /gVSadded followed by sugarcane leaves and corn cob having 333 and 318 mlN/gVSadded, respectively. Additionally, the predicted areas for growing rice and corn decreased. Meanwhile areas for growing cassava, sugarcane and oil palm increase slightly. This study also found out that the unused agricultural waste generation was decreased due to improved waste utilization.


2018 ◽  
Vol 69 (8) ◽  
pp. 2138-2143
Author(s):  
Cristian Eugen Raducanu ◽  
Adina Ionuta Gavrila ◽  
Tanase Dobre ◽  
Petre Chipurici

In this work four heterogeneous catalysts were studied first by preparing a gama-alumina catalytic support then by impregnating with acidic and base compounds to gain certain properties needed to catalyze vegetable oils conversion to biodiesel. The resulted new catalytic properties allowed us to simultaneously conduct esterification and transesterification reaction in a single step when waste cooking oils with a high free fatty acid content were converted to biodiesel. The prepared catalysts were thermally and chemically stable and exhibited good catalytic activity when tested in (trans)esterification reactions to yield biodiesel. The effects of catalyst loading, methanol/oil molar ratio and reaction time on biodiesel yield along with catalyst reusability were investigated. The highest biodiesel yield reached was 88.10% at 65oC reaction temperature, 15:1 methanol/oil molar ratio, 5% catalyst loading and 4 h reaction time.


2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


Author(s):  
Indira Tobío‐Pérez ◽  
Yosvany Díaz Domínguez ◽  
Lizet Rodríguez Machín ◽  
Sven Pohl ◽  
Magín Lapuerta ◽  
...  

Author(s):  
Gerald Kafuku ◽  
Makme Mbarawa ◽  
Man Kee Lam ◽  
Keat Teong Lee

Fatty acid methyl esters (biodiesel), prepared from transesterification of vegetable oils or animal fats, have gained great importance in substituting petroleum based diesel for combating environmental problems and higher diesel prices. Moringa oleifera fatty acids are among the newly investigated potentials for biodiesel production in recent years. In getting rid of soap formation and thus large waste washing water from biodiesel produced from homogenous catalysts, the use of heterogeneous catalysts is currently preferred due to easily separation and purification of the final products. In this study, biodiesel was produced from moringa oleifera oil using sulfated tin oxide enhanced with SiO2 (SO42−/SnO2−SiO2) as super acid solid catalyst. The experimental design was done using design of experiment (DoE), specifically, response surface methodology based on three-variable central composite design (CCD) with alpha (α) = 2. The reaction parameters in the optimization process were reaction temperature (60°C to 180°C), reaction period (1 to 3 hrs) and methanol to oil ratio (1:6 to 1:24 mol/mol). It was observed that the yield up to 84wt% of moringa oleifera methyl esters can be obtained with reaction conditions of 150°C temperature, 150 minutes reaction time and 1:19.5 methanol to oil ratio, while catalyst concentration and agitation speed are kept at 3wt% and 350 rpm respectively.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Namrata D. Gaikwad ◽  
Parag R. Gogate

AbstractIn the present work, carbon based heterogeneous acid catalysts have been prepared using various synthesis approaches based on the use of sustainable starting materials. The properties of the catalysts have been investigated using Fourier transformed infra-red (FTIR), scanning electron microscopy (SEM), temperature-programmed desorption (NH


Sign in / Sign up

Export Citation Format

Share Document