scholarly journals Magnetically Reusable Fe3O4@NC@Pt Catalyst for Selective Reduction of Nitroarenes

Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1219
Author(s):  
Jun Qiao ◽  
Tian Wang ◽  
Kai Zheng ◽  
Enmu Zhou ◽  
Chao Shen ◽  
...  

A novel reusable Fe3O4@NC@Pt heterogeneous catalyst was synthesized by immobilizing platinum on nitrogen-doped carbon magnetic nanostructures. It was characterized by infrared analysis (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). The catalytic efficiency of Fe3O4@NC@Pt was investigated by reduction of nitro aromatic compounds. The catalyst showed good catalytic activity, wide range of substrates, and good chemical selectivity, especially for the substrates of compounds containing halide and carbonyl groups. The magnetically catalyst can readily be reused up to ten cycles without loss of catalytic activity. Moreover, the key pharmaceutical intermediate Lorlatini can be facilely achieved through this strategy.

Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 52
Author(s):  
Nermine V. Fares ◽  
Passant M. Medhat ◽  
Christine M. El Maraghy ◽  
Sherif Okeil ◽  
Miriam F. Ayad

Two inexpensive and simple methods for synthesis of carbon nanodots were applied and compared to each other, namely a hydrothermal and microwave-assisted method. The synthesized carbon nanodots were characterized using transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis), photoluminescence (PL), Fourier transform-infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The synthesized microwave carbon nanodots had smaller particle size and were thus chosen for better electrochemical performance. Therefore, they were used for our modification process. The proposed electrodes performance characteristics were evaluated according to the IUPAC guidelines, showing linear response in the concentration range 10−6–10−2, 10−7–10−2, and 10−8–10−2 M of tobramycin with a Nernstian slope of 52.60, 58.34, and 57.32 mV/decade for the bare, silver nanoparticle and carbon nanodots modified carbon paste electrodes, respectively. This developed potentiometric method was used for quantification of tobramycin in its co-formulated dosage form and spiked human plasma with good recovery percentages and without interference of the co-formulated drug loteprednol etabonate and excipients.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


2020 ◽  
Vol 32 (6) ◽  
pp. 1515-1519
Author(s):  
S.G. Prasanna Kumar ◽  
Nagaraju Kottam ◽  
R. Hari Krishna ◽  
M.N. Chandra Prabha ◽  
R. Preetham ◽  
...  

Ca1-xZrO3:xEu3+ (x = 0.05) phosphors have been prepared by using the low temperature solution combustion synthesis. The prepared nano phospors are well characterized by powder X-ray diffraction, scanning electron microscopy, Fourier infrared spectroscopy and transmission electron spectroscopy. PXRD results showed orthorhombic phase and SEM images showed porous agglomerated morphology. Influence of nitridation on structural and photoluminescence properties of the phosphor were investigated for wide range of nitridation time. The photoluminescence (PL) intensity was found to vary with nitridation with small shift in the photoluminescence emission peaks. The probable reasons for the variation of photoluminescence with nitridation are discussed.


2014 ◽  
Vol 67 (10) ◽  
pp. 1387 ◽  
Author(s):  
Shi-Qiang Bai ◽  
Lu Jiang ◽  
Sheng-Li Huang ◽  
Ming Lin ◽  
Shuang-Yuan Zhang ◽  
...  

Composite Pd/Fe3O4 (1) was designed and synthesised by immobilization of tridentate pincer ligands with triethoxysilane groups on Fe3O4 nanoparticles, PdII complexation, and in-situ reduction process. The composite was characterised by transmission electron microscopy, scanning electron microscopy energy-dispersive X-ray spectroscopy, powder X-ray diffraction, vibrating sample magnetometer, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer–Emmett–Teller analysis. The composite featured Pd nanoparticles of ~2–4 nm, exhibited good thermal stability and hydrophilic property as well as excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol in water.


2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.


2008 ◽  
Vol 23 (5) ◽  
pp. 1457-1465 ◽  
Author(s):  
Jining Xie ◽  
Shouyan Wang ◽  
L. Aryasomayajula ◽  
V.K. Varadan

The effect of nanomaterials in platinum-decorated, multiwalled, carbon nanotube-based electrodes for amperometric glucose sensing was investigated by a comparative study with other carbon material-based electrodes such as graphite, glassy carbon, and multiwalled carbon nanotubes. Scanning and transmission electron microscopy and x-ray diffraction were used to investigate their morphologies and crystallinities. Electrochemical impedance spectroscopy was conducted to compare the electrochemical characteristics of these electrodes. The glucose-sensing results from the chronoamperometric measurements indicated that carbon nanotubes improve the linearity of the current response to glucose concentrations over a wide range, and that platinum decoration of the carbon nanotubes produces improved electrochemical performance with a higher sensitivity.


Author(s):  
А.С. Конопацкий ◽  
К.Л. Фаерштейн ◽  
И.Н. Волков ◽  
Д.В. Лейбо ◽  
В.В. Калинина ◽  
...  

Structure and catalytic activity of the novel heterostructured FePt/h-BN nanomaterials in carbon monoxide oxidation reaction were studied. Transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction methods were used for structure and surface chemical composition investigation. Developed materials were demonstrated to have enhanced catalytic activity with 100% CO conversion at 250 °C. Structure ordering in FePt nanoparticles was observed during thermal activation of the material.


2021 ◽  
Author(s):  
B. Khandsuren ◽  
J. Prokisch

AbstractIn recent years, the importance of nanomaterials in food science, medicine, etc. has been increasing quickly. Herein, organic and inorganic red selenium nanoparticles synthesised by the reduction of sodium selenite with chemical and biological reducing agents. Grey hexagonal form in aqueous and powder was assembled at a high temperature of 85 °C for 10 min. Also, selenium enriched yogurt powder was made that contained about 2,000 mg kg−1 selenium, 93.8% of which is in nano form with a size of 50–500 nm. The synthesised nanoparticles were characterised by Dynamic Light Scattering Particle Size Analyzer (DLS), X-ray Diffraction Analysis (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The prepared SeNPs could be promising additive for a wide range of applications.


2021 ◽  
Vol 11 (1) ◽  
pp. xx-xx
Author(s):  
Nga Phan To ◽  
Lien Nguyen Hong ◽  
Tuyen Le Van ◽  
Nhan Phan Chi ◽  
Huyen Phan Thanh

Porous LaFeO3 were synthesised by nanocasting method using mesoporous silica (SBA-15) as a hard template and used as a visible-light-driven photocatalyst. The as-synthesised LaFeO3 photocatalyst were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD), N2 adsorption-desorption, and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-vis DRS). The photo-Fenton catalytic activities of porous LaFeO3 were investigated for the degradation of oily-containing wastewater. The results showed that porous LaFeO3 had better photo-Fenton catalytic activity under visilbe light irradiation than pure LaFeO3. The remarkable improvement photo-Fenton catalytic activity of porous LaFeO3 material could be attributed to the synergistic effect of adsorption and visible light photo-Fenton processes thanks to its porous structure.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 435 ◽  
Author(s):  
Sneha Bhagyaraj ◽  
Igor Krupa

A new method for the simple synthesis of stable heterostructured biopolymer (sodium alginate)-capped silver nanoparticles (Ag-NPs) based on green chemistry is reported. The as-prepared nanoparticles were characterized using the ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) techniques. The results showed that the as-prepared Ag-NPs have a heterostructured morphology with particle size in the range 30 ± 18–60 ± 25 nm, showing a zeta potential of −62 mV. The silver nanoparticle formation was confirmed from UV-Vis spectra showing 424 nm as maximum absorption. The particle size and crystallinity of the as-synthesized nanoparticles were analyzed using TEM and XRD measurements, respectively. FTIR spectra confirmed the presence of alginate as capping agent to stabilize the nanoparticles. The Ag-NPs also showed excellent sensing capability, with a linear response to hydrogen peroxide spanning a wide range of concentrations from 10−1 to 10−7 M, which indicates their high potential for water treatment applications, such as pollution detection and nanofiltration composites.


Sign in / Sign up

Export Citation Format

Share Document