scholarly journals Impact of a Modified Fenton Process on the Degradation of a Component Leached from Microplastics in Bottom Sediments

Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 932 ◽  
Author(s):  
Kida ◽  
Ziembowicz ◽  
Koszelnik

This paper describes work to assess the possibility of a modified Fenton process being used to remove the hard-to-degrade plasticizer di(2-ethylhexyl) phthalate (DEHP) from the bottom sediments of a reservoir. The modifications in question entail iron(II) ions being replaced by iron(III), as well as facilitation of the process using a chelating agent. Analysis further revolved around the impact of such factors as amounts of reagents, reaction of the environment, initial contents of the contaminant, and the presence of other “competing” contaminants also of a hard-to-decompose nature. As the maximum efficiency of DEHP removal obtained did not exceed 30%, the low susceptibility to degradation is made clear, as is the need for earlier desorption of the contaminant from the matrix. The effect of the modified Fenton process on the content of organic matter and dissolved organic carbon was also considered, as was the tendency to cause selected metals and plant nutrients to leach from bottom sediments.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3029
Author(s):  
Małgorzata Kida ◽  
Sabina Ziembowicz ◽  
Piotr Koszelnik

The work detailed here examined the impact of selected unit methods and ultrasonic removal of the widespread plastic additive di(2-ethylhexyl) phthalate (DEHP) from the bottom sediments of a body of water. To this end, hydrogen peroxide and a classic or modified Fenton process were used, supplemented by an ultrasonic field. The latter had a vibration frequency of 20 kHz and an acoustic wave intensity of 3.97 W/cm2. The impact of process parameters such as reaction environment, reaction time, initial impurity content, aging of the impurity, influence of processes on the content of organic matter and dissolved organic carbon, and elution of selected components from the matrix were all analysed. It emerged that the most effective process by which to remove DEHP from a solid matrix involved a modified Fenton process assisted by an ultrasonic field. The highest average degradation efficiency achieved in this way was 70.74%, for C0 = 10 mg/kg d.w. and t = 60 min.


2012 ◽  
Vol 12 (4) ◽  
pp. 207-212 ◽  
Author(s):  
Daniel Szymański ◽  
Julita Dunalska ◽  
Michał Łopata ◽  
Izabela Bigaj ◽  
Rafał Zieliński

AbstractThe aim of this study was to determine the chemical composition of Lake Widryńskie bottom sediments (max. depth. 27.0 m, area 123.9 ha). The sampling of bottom sediments was conducted once, on 16 August 2010. Sampling was made in 10 specific areas. Among the 10 samples, 4 samples were taken from the littoral and sublittoral zones, while the rest were taken from the profundal zone. The dominant component of the sediments was silica and calcium carbonates were subdominant. Based on the survey, it was determined that silica occurred in greater numbers in littoral sediments, while in sublittoral sediments there was increased participation in the chemical composition of organic matter. The elements that build a capacity complex were a small percentage of the dry weight of sediment. Sediment from the vicinity of inflows contains higher amounts of silica, which confirmed the impact of the catchment on the chemical composition of sediments.


2014 ◽  
Vol 38 (1) ◽  
pp. 278-287 ◽  
Author(s):  
Gabriel Pinto Guimarães ◽  
Eduardo de Sá Mendonça ◽  
Renato Ribeiro Passos ◽  
Felipe Vaz Andrade

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.


2020 ◽  
Author(s):  
Ting Wang

<p>Natural organic matter (NOM) played an important role in the riverine and global carbon cycle. In order to evaluate the impact of river discharge and anthropogenic activities on the spatio-temporal variability of NOM content and sources in Lancang River, China, a comprehensive study was conducted in two years from the head to the leave-boundary section. As results, the DOC value ranged among 0.91-2.80 mg/L, with sharp decrease in the middle reaches and downstream. While the SOC value significantly enhanced along the water flow, varied from 0.06% to 3.54%. The isotopic composition of organic carbon (δ13C) suggested that predominant contribution of NOM is C3 plants in the upper reach, algae and soil organic matter in the middle reach, and aquatic plants in the downstream. EEM-PARAFAC results proved that NOM in Lancang River is mainly terrestrial organic carbon, while in situ microbial transformed NOM is very low. Moreover, the sharp increase of dissolved CO2 concentration in the lower reaches confirmed the strong respiration of microorganisms due to the higher DO and water temperature, thus resulted in the significantly different fluctuations of DOC and SOC.</p>


2011 ◽  
Vol 8 (11) ◽  
pp. 3341-3358 ◽  
Author(s):  
S. Audry ◽  
O. S. Pokrovsky ◽  
L. S. Shirokova ◽  
S. N. Kirpotin ◽  
B. Dupré

Abstract. This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m−2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions was suggested. This shift was likely promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.


2021 ◽  
pp. 531-547
Author(s):  
I.A. Nemirovskaya ◽  
◽  
A.M. Titova ◽  
A.V. Khramtsova ◽  
◽  
...  

Hydrocarbons in water, suspended matter and bottom sediments of the Barents Sea were studied based on materials from expeditions to the RV Akademik Mstislav Keldysh in 2016–2019. It is shown that at present there is no oil pollution in open areas of the Barents Sea. With the transition from early summer (2019) to autumn (2016), there was a decrease in hydrocarbon concentrations in surface waters, caused by a change in the biochemical composition of organic matter (possibly due to a decrease in the area of ice). With depth, the HC content decreased mainly. An exception was observed in the area of gutters and deposits, where in the bottom nepheloid layers there was an increase in the concentration of hydrocarbons in suspension and in the surface layer of bottom sediments, and in the thickness of the sediments there was no dependence on their distribution and organic carbon.


2021 ◽  
Author(s):  
Layla M. San-Emeterio ◽  
Ian D. Bull ◽  
Jens Holtvoeth ◽  
Rafael López ◽  
Francisco J. González-Vila ◽  
...  

<p>Lipid biomarker analysis is an efficient tool for tracing organic matter sources in diverse environments. The quantification of biomarkers facilitates the location of soil organic carbon (SOC) from different sources in a soil profile. According to their structure, biomarkers from total lipid extracts (TLE) would exhibit different degrees of susceptibility to degradation, affecting thus their preservation in soils. Hence, it is crucial to better identify these biomarkers according to diverse stability scales. The aim of this study is to assess SOC contributions from aboveground and to develop a wider approach based on the allocation of C to quantitatively assess the sources of organic matter in low SOM content, highly weathered Mediterranean soils, following a C3-C4 rotation experiment.</p><p>Soil samples were taken from three depth intervals (0-5, 5-20, 20-40 cm) from a Mediterranean agricultural soil at “La Hampa” experimental station used for a crop rotation experiment with wheat (C3 plant) and maize (C4 plant). Lipids were extracted and quantified as described in [1].</p><p>The total lipid extracts were dominated by a homologous series of n-alkanols (saturated alcohols), short-, mid- and long-chain fatty acid methyl ester (FAME), branched FAME, unsaturated (mono- and polyunsaturated) FAME and sterols. Short-chain FAME, monounsaturated FAME were the most abundant fractions of free lipids. Mono-unsaturated alkanoic acids (Cn:1 FA) were detected in considerable amounts in all samples, namely various isomers of C16:1, C18:1, C20:1 and C22:1; these are believed to be mainly synthesised by soil bacteria. A significant increase of these compounds in rotation plots leads to an effective microbial consumption of labile organic matter in the surface soil [2]. Regarding FAME, the observed chain lengths ranged from C13 to C32, showing a unimodal distribution maximising at C16 and C18. These compounds are attributed also to microbial products, supporting our findings from the high proportion of the monounsaturated compounds found. In general, and in relation with all compounds, the abundances increased up to 20% compared with the control plots representing the initial content.</p><p>These results indicate that, only after three years of crop rotation, a considerable contribution of soil organic carbon is inherited from bacterial activity. The combination of extractable lipids has been shown to validate the use of TLE as a proxy for source and other information on vegetation change and soil processes. This work will bring a discussion on the use of these compounds for tracing the impact of crop rotation on carbon storage.</p><p>Acknowledgement: Ministerio de Ciencia Innovación y Universidades (MICIU) for INTERCARBON project (CGL2016-78937-R). L. San Emeterio also thanks MICIU for funding FPI research grants (BES-2017-07968). Mrs Desiré Monis is acknowledged for technical assistance.</p><p>[1] M. San-Emeterio, L., Bull, I. D., Holtvoeth, J., and González-Pérez, J. A.: Compound-specific isotopic analysis of fatty acids in three soil profiles to estimate organic matter turnover in agricultural soils., <em>EGU General Assembly 2020</em>, Online, 4–8 May 2020, EGU2020-18526, https://doi.org/10.5194/egusphere-egu2020-18526, 2020.</p><p>[2] Tu, T. T. N., Egasse, C., Anquetil, C., Zanetti, F., Zeller, B., Huon, S., & Derenne, S. (2017). Leaf lipid degradation in soils and surface sediments: A litterbag experiment. <em>Organic Geochemistry</em>, 104, 35-41.</p>


2021 ◽  
Vol 15 (2) ◽  
pp. 47-62
Author(s):  
V. Kozlovskyy ◽  
◽  
N. Romanyuk ◽  

Background. Several theories have been proposed to explain the podzolization process. Currently, the role of organic matter in both weathering and immobilization in the illuvial horizon is clearly stated. The origin of soil organic matter and, accordingly, the various mechanisms of its influence on the soil material, create the basis of these theories. We assume that in the base-poor sandy soils under rich herbaceous vegetation with a well developed sod layer, the process of podzolization may also depend on CO2 soil formation agent . Materials and Methods. Four localities along a Pinus sylvestris L. self-afforestation chronosequence with pine stands of 10, 20, 40 yrs and an adjacent semi-natural grassland area were investigated in order to determine the patterns of podzolization process on sandy glacial till deposits. Soil pH, exchangeable base, soil cation exchange capacity, total content of soil organic carbon, amorphous Fe, Si and Al and total contents of Al, Fe, Mn, Zn, Cd, Pb, Cu, Co, Ni, Na, K were determined. Statistical analysis of the results was performed using LibreOffice for Linux. Results. During the pine succession, a previously well differentiated into horizons podzolic soil under the grassland vegetation community gradually degrades. Previously well-defined albic and spodic diagnostic horizons disappear, the soil profile becomes more acidic, the soil organic carbon, the base cation content and the base cation saturation decrease, the leaching rate of aluminium and iron increases. Secondary podzolization features in the soil profiles were detected 40 years after the onset of afforestation. The podzolization has not been intensive enough to develop fully fledged albic and spodic diagnostic horizons over such a short period. Conclusions. Based on the obtained soil morphological, physical and chemical properties, three most important agents of podzolization are proposed as principal for the studied area. The main gent under pine forest is fulvic acids that are produced during coniferous litter decomposition. Low molecular weight organic acids and carbon dioxide produced to the rhizosphere by roots and a root associated microbiota are mainly involved in the podzolization process under the grassland ecosystem.


2020 ◽  
Author(s):  
Amicie Delahaie ◽  
Pierre Barré ◽  
Lauric Cécillon ◽  
François Baudin ◽  
Camille Resseguier ◽  
...  

<p>The term Organic Waste Products (OWPs) encompasses a wide range of byproducts such as manure, sewage sludge or green waste compost. The use of OWPs impacts soil quality and functioning, agricultural yields, carbon (C) sequestration, biogeochemical cycles of nutrients like nitrogen (N) or phosphorus, and organic matter (OM) dynamics. These impacts likely depend on the considered OWP.</p><p>Taking advantage of 3 mid to long-term experimental trials (6 to 20 years) located in the Northern part of France (Paris region; Brittany; Alsace), we investigated the impact of 16 different OWPs on C content and stability. To do so, surface soil samples from replicated plots amended with the different OWPs used either alone or in addition with mineral N fertilization and appropriated control treatments were analyzed using Rock-Eval 6® thermal analyses. Samples taken up at the onset of the experiment and after 6, 18 and 20 years for the 3 sites respectively were analyzed. It resulted in the analyses of 248 different samples whose Rock-Eval 6® (RE6) signature can be used as a proxy for soil organic carbon (SOC) biogeochemical stability. In particular, we determined 2 RE6 parameters that were related to SOC biogeochemical stability in previous studies (e.g. Barré et al., 2016): HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g<sup>-1</sup> SOC), and T50 CO<sub>2</sub> oxidation (the temperature at which 50% of the residual organic C was oxidized to CO<sub>2</sub> during the RE6 oxidation phase; °C). We also computed the amount of centennially stable SOC from RE6 parameters using the model developed in Cécillon et al. (2018).  </p><p> </p><p>Our results showed that no clear effect of OWPs addition can be established for the youngest site (6 years). On the contrary, OWPs amendments had a clear effect on SOC quantity and quality at the sites having experienced 18 and 20 years of OWPs addition. For these sites, OWPs amendments increased SOC content, decreased SOC thermal stability (T50 CO<sub>2</sub> oxidation) and increased the Rock-Eval 6® Hydrogen Index (HI) compared to control plots. OWPs amendments tended to increase slightly the amount of centennially stable SOC at the sites having experienced 20 years of repeated OWPs application. Our results suggest that if OWPs addition does increase SOC content, at least in the long run, the majority of this additional SOC is labile and may be quickly lost if OWPs additions are stopped.</p><p> </p><p>References:</p><p>Barré P., Plante A.F., Cécillon L., Lutfalla S., Baudin F., Bernard S., Christensen B.T., Eglin T., Fernandez J.M., Houot S., Kätterer T., Le Guillou C., Macdonald A., van Oort F. & Chenu C. (2016) The energetic and chemical signatures of persistent soil organic matter. Biogeochemistry, 130: 1-12.</p><p>Cécillon L., Baudin F., Chenu C., Houot S., Jolivet R., Kätterer T., Lutfalla S., Macdonald A.J., van Oort F., Plante A.F., Savignac F., Soucémarianadin L.N. & Barré P. (2018) A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils. Biogeosciences, 15, 2835-2849.</p>


Sign in / Sign up

Export Citation Format

Share Document