scholarly journals Single-Cell Profiling of Coding and Noncoding Genes in Human Dopamine Neuron Differentiation

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 137
Author(s):  
Fredrik Nilsson ◽  
Petter Storm ◽  
Edoardo Sozzi ◽  
David Hidalgo Gil ◽  
Marcella Birtele ◽  
...  

Dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson’s disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation. DA neurons sharing similar molecular identities to those found in authentic DA neurons derived from human fetal VM were the major cell type after two months in culture. We also developed a bioinformatic pipeline that provided a comprehensive long noncoding RNA landscape based on temporal and cell-type specificity, which may contribute to unraveling the intricate regulatory network of coding and noncoding genes in DA neuron differentiation. Our findings serve as a valuable resource to elucidate the molecular steps of development, maturation, and function of human DA neurons, and to identify novel candidate coding and noncoding genes driving specification of progenitors into functionally mature DA neurons.

2014 ◽  
Vol 175 ◽  
pp. 13-26 ◽  
Author(s):  
Yung-Kang Peng ◽  
Cathy N. P. Lui ◽  
Tsen-Hsuan Lin ◽  
Chen Chang ◽  
Pi-Tai Chou ◽  
...  

Neural stem cells (NSCs), which generate the main phenotypes of the nervous system, are multipotent cells and are able to differentiate into multiple cell types via external stimuli from the environment. The extraction, modification and re-application of NSCs have thus attracted much attention and raised hopes for novel neural stem cell therapies and regenerative medicine. However, few studies have successfully identified the distribution of NSCs in a live brain and monitored the corresponding extraction processes both in vitro and in vivo. To address those difficulties, in this study multi-functional uniform nanoparticles comprising an iron oxide core and a functionalized silica shell (Fe3O4@SiO2(FITC)-CD133, FITC: a green emissive dye, CD133: anti-CD133 antibody) have been strategically designed and synthesized for use as probe nanocomposites that provide four-in-one functionality, i.e., magnetic agitation, dual imaging (both magnetic resonance and optical) and specific targeting. It is shown that these newly synthesized Fe3O4@SiO2(FITC)-CD133 particles have clearly demonstrated their versatility in various applications. (1) The magnetic core enables magnetic cell collection and T2 magnetic resonance imaging. (2) The fluorescent FITC embedded in the silica framework enables optical imaging. (3) CD133 anchored on the outermost surface is demonstrated to be capable of targeting neural stem cells for cell collection and bimodal imaging.


2018 ◽  
Author(s):  
Hengxing Ba ◽  
Datao Wang ◽  
Weiyao Wu ◽  
Hongmei Sun ◽  
Chunyi Li

AbstractAntler regeneration, a stem cell-based epimorphic process, has potential as a valuable model for regenerative medicine. A pool of antler stem cells (ASCs) for antler development is located in the antlerogenic periosteum (AP). However, whether this ASC pool is homogenous or heterogeneous has not been fully evaluated. In this study, we produced a comprehensive transcriptome dataset at the single-cell level for the ASCs based on the 10x Genomics platform (scRNA-seq). A total of 4,565 ASCs were sequenced and classified into a large cell cluster, indicating that the ASCs resident in the AP are likely to be a homogeneous population. The scRNA-seq data revealed that tumor-related genes were highly expressed in these homogeneous ASCs: i.e. TIMP1, TMSB10, LGALS1, FTH1, VIM, LOC110126017 and S100A4. Results of screening for stem cell markers suggest that the ASCs may be considered as a special type of stem cell between embryonic (CD9) and adult (CD29, CD90, NPM1 and VIM) stem cells. Our results provide the first comprehensive transcriptome analysis at the single-cell level for the ASCs, and identified only one major cell type resident in the AP and some key stem cell genes, which may hold the key to why antlers, the unique mammalian organ, can fully regenerate once lost.


2021 ◽  
Author(s):  
Sevil Kestane

This overview was evaluated by the development of diabetic retinopathy (DR) and the stem cell therapy approach. DR is a microvascular complication of diabetes mellitus, characterized by damage to the retinal blood vessels leading to progressive loss of vision. However, the pathophysiological mechanisms are complicated and not completely understood yet. The current treatment strategies have included medical, laser, intravitreal, and surgical approaches. It is known that the use of mesenchymal stem cells (MSC), which has a great potential, is promising for the treatment of many degenerative disorders, including the eye. In retinal degenerative diseases, MSCs were ameliorated retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Stem cell therapies show promise in neurodegenerative diseases. However, it is very important to know which type of stem cell will be used in which situations, the amount of stem cells to be applied, the method of application, and its physiological/neurophysiological effects. Therefore, it is of great importance to evaluate this subject physiologically. After stem cell application, its safety and efficacy should be followed for a long time. In the near future, widespread application of regenerative stem cell therapy may be a standard treatment in DR.


2005 ◽  
Vol 17 (9) ◽  
pp. 67
Author(s):  
P. J. Verma ◽  
K. Upton ◽  
H. Mc Connell ◽  
I. Vassiliev

The isolation of stem cells has become an area of increasing interest due to their potential uses in animal reproduction, somatic cell nuclear transfer and cell therapies. The most attractive options are the isolation of stem cells from individual embryos or adult somatic tissues. In addition, for cell therapy, the use of autologous stem cells is considered to have an advantage over heterologous cell based therapies in that immune rejection issues would be circumvented. Here we report on our attempts to isolate stem cells from both these sources in a bovine model. Bovine ES-like (bES) cells were successfully isolated from embryos and maintained in vitro for up to six passages. These cells retained the morphology characteristic of bES cells: small cytoplasmic/nuclear ratio, nuclei with multiple nucleoli, and multiple lipid inclusions in cytoplasm. bES cell colonies grew as monolayers, as islands of ES cells surrounded by trophectoderm (TE) cells. Immunohistochemical detection of SSEA-1 and SSEA-4 demonstrated expression of these markers in bES cells but not in TE cells. Further, the expression of the pluripotent markers Oct-4, Rex-1 and SSEA-1 by RT-PCR was also detected in bES cells but not in TE cells. On spontaneous differentiation, these cells were able to form a variety of cell types including beating muscle with the cells displaying a propensity to differentiate in a manner reminiscent of human ES cells. (2) We also report the isolation of putative stem cells from adult bovine skin biopsies, which express the stem cell markers Oct-4 and SSEA-1 analysed by RT-PCR and are capable of forming 3-dimensional colonies. These cells are obtained from a skin biopsy, a relatively non-invasive technique that makes them useful as donors for therapeutic applications. In summary, we have identified populations of stem cells from embryonic and adult bovine tissues, which are readily isolated. Further characterization of the differentiation potential of these cells is needed to identify the suitability of this population for use in autologous stem cell therapies.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Nima Purvis ◽  
Andrew Bahn ◽  
Rajesh Katare

Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.


2020 ◽  
Vol 15 (5) ◽  
pp. 1679-1688
Author(s):  
Alex HP Chan ◽  
Ngan F Huang

Although stem cell therapy has tremendous therapeutic potential, clinical translation of stem cell therapy has yet to be fully realized. Recently, patient comorbidities and lifestyle choices have emerged to be important factors in the efficacy of stem cell therapy. Tobacco usage is an important risk factor for numerous diseases, and nicotine exposure specifically has become increasing more prevalent with the rising use of electronic cigarettes. This review describes the effects of nicotine exposure on the function of various stem cells. We place emphasis on the differential effects of nicotine exposure in vitro and as well as in preclinical models. Further research on the effects of nicotine on stem cells will deepen our understanding of how lifestyle choices can impact the outcome of stem cell therapies.


Author(s):  
Bruna Lopes ◽  
Patrícia Sousa ◽  
Rui D. Alvites ◽  
Mariana Vieira Branquinho ◽  
Ana Catarina Sousa ◽  
...  

In the past decades, regenerative medicine applied on skin lesions has been a field of constant improvement for both human and veterinary medicine. The process of healing cutaneous wound injuries implicates a well-organized cascade of molecular and biological processes. However, sometimes the normal process fails and can result in a chronic lesion. In addition, wounds are considered an increasing clinical impairment, due to the progressive ageing of the population, as well as the prevalence of concomitant diseases, such as diabetes and obesity, that represent risk aggravating factors for the development of chronic skin lesions. Stem cells regenerative potential has been recognized worldwide, including towards skin lesion repair, Tissue engineering techniques have long been successfully associated with stem cell therapies, namely the application of 3D bioprinted scaffolds. With this review we intend to explore several stem cell sources with promising aptitude towards skin regeneration, as well as different techniques used to deliver those cells and provide a supporting extracellular matrix environment, with effective outcomes. Furthermore, different studies are discussed, both in vitro and in vivo, towards their relevance in the skin regeneration field.


2021 ◽  
Author(s):  
Suraj Kannan ◽  
Matthew Miyamoto ◽  
Brian L. Lin ◽  
Chulan Kwon

ABSTRACTA primary limitation in the clinical application of pluripotent stem cell derived cardiomyocytes (PSC-CMs) is the failure of these cells to achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive changes during perinatal maturation. By contrast, PSC-CMs fail to fully undergo these developmental processes, instead remaining arrested at an embryonic stage of maturation. To date, however, the precise mechanisms by which directed differentiation differs from endogenous development, leading to consequent PSC-CM maturation arrest, are unknown. The advent of single cell RNA-sequencing (scRNA-seq) has offered great opportunities for studying CM maturation at single cell resolution. However, perinatal cardiac scRNA-seq has been limited owing to technical difficulties in the isolation of single CMs. Here, we used our previously developed large particle fluorescence-activated cell sorting approach to generate an scRNA-seq reference of mouse in vivo CM maturation with extensive sampling of perinatal time periods. We subsequently generated isogenic embryonic stem cells and created an in vitro scRNA-seq reference of PSC-CM directed differentiation. Through trajectory reconstruction methods, we identified a perinatal maturation program in endogenous CMs that is poorly recapitulated in vitro. By comparison of our trajectories with previously published human datasets, we identified a network of nine transcription factors (TFs) whose targets are consistently dysregulated in PSC-CMs across species. Notably, we demonstrated that these TFs are only partially activated in common ex vivo approaches to engineer PSC-CM maturation. Our study represents the first direct comparison of CM maturation in vivo and in vitro at the single cell level, and can be leveraged towards improving the clinical viability of PSC-CMs.Significance StatementThere is a significant clinical need to generate mature cardiomyocytes from pluripotent stem cells. However, to date, most differentiation protocols yield phenotypically immature cardiomyocytes. The mechanisms underlying this poor maturation state are unknown. Here, we used single cell RNA-sequencing to compare cardiomyocyte maturation pathways in endogenous and pluripotent stem cell-derived cardiomyocytes. We found that in vitro, cardiomyocytes fail to undergo critical perinatal gene expression changes necessary for complete maturation. We found that key transcription factors regulating these changes are poorly expressed in vitro. Our study provides a better understanding of cardiomyocyte maturation both in vivo and in vitro, and may lead to improved approaches for engineering mature cardiomyocytes from stem cells.


2021 ◽  
Vol 118 (25) ◽  
pp. e2100052118
Author(s):  
Annelies Vennekens ◽  
Emma Laporte ◽  
Florian Hermans ◽  
Benoit Cox ◽  
Elodie Modave ◽  
...  

Stem cells in the adult pituitary are quiescent yet show acute activation upon tissue injury. The molecular mechanisms underlying this reaction are completely unknown. We applied single-cell transcriptomics to start unraveling the acute pituitary stem cell activation process as occurring upon targeted endocrine cell–ablation damage. This stem cell reaction was contrasted with the aging (middle-aged) pituitary, known to have lost damage-repair capacity. Stem cells in the aging pituitary show regressed proliferative activation upon injury and diminished in vitro organoid formation. Single-cell RNA sequencing uncovered interleukin-6 (IL-6) as being up-regulated upon damage, however only in young but not aging pituitary. Administering IL-6 to young mice promptly triggered pituitary stem cell proliferation, while blocking IL-6 or associated signaling pathways inhibited such reaction to damage. By contrast, IL-6 did not generate a pituitary stem cell activation response in aging mice, coinciding with elevated basal IL-6 levels and raised inflammatory state in the aging gland (inflammaging). Intriguingly, in vitro stem cell activation by IL-6 was discerned in organoid culture not only from young but also from aging pituitary, indicating that the aging gland’s stem cells retain intrinsic activatability in vivo, likely impeded by the prevailing inflammatory tissue milieu. Importantly, IL-6 supplementation strongly enhanced the growth capability of pituitary stem cell organoids, thereby expanding their potential as an experimental model. Our study identifies IL-6 as a pituitary stem cell activator upon local damage, a competence quenched at aging, concomitant with raised IL-6/inflammatory levels in the older gland. These insights may open the way to interfering with pituitary aging.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
D Wang ◽  
S Hildorf ◽  
L Dong ◽  
S E Pors ◽  
L S Mamsen ◽  
...  

Abstract Study question Is colonization of human gonocytes and spermatogonial stem cells (SSCs) directly transplanted to seminiferous tubules of busulfan sterilised mice testis during an 8-week period feasible?  Summary answer Gonocytes and SSCs from infant boys can settle on the basal membrane and form germline stem cell colonies in the seminiferous tubules of recipient mice. What is known already The neonatal or immature animal provides higher populations of gonocytes and/or SSCs than adults, and the number of transplanted donor SSCs directly affects the colonization rate of the recipient testes. Along with SSC transplantation restoring the recipient’s spermatogenesis, donor gonocyte was also reported to be capable of establishing spermatogenesis in rodents. Study design, size, duration Transplantation of human testicular cells including gonocytes and SSCs into seminiferous tubules of infertile recipient mice. We included 10 infant testis biopsies from which single-cell suspension was transplanted individually into the seminiferous tubules of 10 immunodeficient mice. The immunodeficient mouse testes were injected with busulfan to deplete germ cells. Four weeks later, we did the xenotransplantation. Then after eight weeks, we collected all mouse testes to do further analysis. Participants/materials, setting, methods Testis biopsies were obtained from cryptorchid boys undergoing orchidopexy. After enzymatic digestion of the testis biopsies, dissociated single-cell suspensions were pre-labeled with a green fluorescent dye. Then the single-cell suspensions were transplanted into seminiferous tubules of the infertile recipient mice. Eight weeks later, the presence of gonocytes and SSCs was determined by immunohistochemistry and whole-mount immunofluorescence. Main results and the role of chance Without in vitro propagation, naturally enriched human germline stem cells settled on the basal membrane of seminiferous tubules and survived in the mouse testes at least for two months demonstrating that human gonocytes and SSCs were capable of colonizing the recipient mouse seminiferous tubules. Limitations, reasons for caution The study samples were from infant boys with undescended testes that were more likely to contain gonocytes. It was not possible to determine which germ-cell type at transplantation resulted in the detected gonocytes and SSC colonies after xenotransplantation. Transplantation of gonocytes may include the potential risk of stem cell-related malignancy. Wider implications of the findings Without in vitro propagation, male germline stem cell-based transplantation could provide a relatively safe therapeutic treatment for prepubertal boys with cryptorchidism and boys diagnosed with cancer. This method could also facilitate clinical translation. Trial registration number not applicable


Sign in / Sign up

Export Citation Format

Share Document