scholarly journals A Multi-Omics Study Revealing the Metabolic Effects of Estrogen in Liver Cancer Cells HepG2

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 455
Author(s):  
Minqian Shen ◽  
Mengyang Xu ◽  
Fanyi Zhong ◽  
McKenzie C. Crist ◽  
Anjali B. Prior ◽  
...  

Hepatocellular carcinoma (HCC) that is triggered by metabolic defects is one of the most malignant liver cancers. A much higher incidence of HCC among men than women suggests the protective roles of estrogen in HCC development and progression. To begin to understand the mechanisms involving estrogenic metabolic effects, we compared cell number, viability, cytotoxicity, and apoptosis among HCC-derived HepG2 cells that were treated with different concentrations of 2-deoxy-d-glucose (2-DG) that blocks glucose metabolism, oxamate that inhibits lactate dehydrogenase and glycolysis, or oligomycin that blocks ATP synthesis and mitochondrial oxidative phosphorylation. We confirmed that HepG2 cells primarily utilized glycolysis followed by lactate fermentation, instead of mitochondrial oxidative phosphorylation, for cell growth. We hypothesized that estrogen altered energy metabolism via its receptors to carry out its anticancer effects in HepG2 cells. We treated cells with 17β-estradiol (E2), 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) an estrogen receptor (ER) α (ERα) agonist, or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), an ERβ agonist. We then used transcriptomic and metabolomic analyses and identified differentially expressed genes and unique metabolite fingerprints that are produced by each treatment. We further performed integrated multi-omics analysis, and identified key genes and metabolites in the gene–metabolite interaction contributed by E2 and ER agonists. This integrated transcriptomic and metabolomic study suggested that estrogen acts on estrogen receptors to suppress liver cancer cell growth via altering metabolism. This is the first exploratory study that comprehensively investigated estrogen and its receptors, and their roles in regulating gene expression, metabolites, metabolic pathways, and gene–metabolite interaction in HCC cells using bioinformatic tools. Overall, this study provides potential therapeutic targets for future HCC treatment.

2021 ◽  
Author(s):  
Chunwen Pu ◽  
Qi Wang ◽  
Aijun Sun ◽  
Ping Sun ◽  
Hui Huang ◽  
...  

Abstract Background Exosomes play an important role in regulating the growth in normal and abnormal cells. Exosomes secreted from tumor cells are also involved in regulating the growth behaviors of normal cells and tumor cells. Methods HepG2 cells, LO2 and HepG2 cells with GPC3 knocked down using shRNA (HepG2-shGPC3), were treated with different concentrations of GPC3. The effects of different concentrations of GPC3 on cell growth and apoptosis were determined using CCK8 and flow cytometry. HepG2 exosomes (Exo) and exosomes of HepG2 cells with GPC3 knocked down using shRNA (shGPC3-Exo) were used to treat LO2 and HepG2 cells separately. Cell growth was measured by CCK8 kit. The cell cycle and apoptosis were measured by flow cytometry. The expression of GPC3/WNT3A/β-catenin signal protein was determined by Western blotting. Results We found GPC3 has a two-way regulation between normal cells and HCC cells, which is the innovation of this research. After treating LO2 cells and HepG2 cells with GPC3, the LO2 cell cycle was blocked in the G0/G1 phase, while cell growth was inhibited and apoptosis was promoted; however, it appeared to promote the growth of HepG2 cells. Knocking down GPC3 can inhibit the growth and promote cell apoptosis of HepG2. In subsequent experiments, we found that GPC3 was expressed in both LO2 and HepG2 exosomes, and the expression of GPC3 in HepG2 exosomes is significantly higher than that of LO2 exosomes. These results suggested that GPC3 in exosomes has the potential to become a biomarker of HCC. In addition, HepG2 exosomes (Exo) can inhibit the growth of LO2 cells and promote apoptosis, which is consistent with the effect of GPC3 treatment. Further, we found that GPC3 in shGPC3-Exo had the same effect on LO2 cells as HepG2 exosomes (Exo), but the degree of influence was reduced. shGPC3-Exo showed a promoting effect on the growth of HepG2 cells. Therefore, GPC3 in exosomes plays a role in the growth of LO2 cells and HepG2 cells. Further studies have shown that GPC3 in liver cancer exosomes regulates the proliferation, apoptosis of LO2 and HepG2 cells through the Wnt /β-catenin signaling pathway. Conclusion GPC3 in the exosomes of liver cancer cells inhibits the growth of normal liver cells and promotes apoptosis by activating the Wnt/β-catenin signaling pathway, and assists the occurrence and development of HCC.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 287-287
Author(s):  
Tony Yang ◽  
Cayla Boycott ◽  
Katarzyna Lubecka ◽  
Barbara Stefanska

Abstract Objectives We previously discovered that a novel gene, BRUNOL5, is hypomethylated at the promoter region and upregulated in patients with primary liver cancer. Since DNA hypomethylation was shown to underlie up-regulation of genes with oncogenic functions, BRUNOL5 could potentially act as an oncogene. Interestingly, certain dietary compounds such as polyphenols with a stilbenoid ring have been demonstrated by us and others to suppress hypomethylated cancer-driving genes. In the present study, we investigate BRUNOL5 oncogenic functions and the role of two stilbenoids, resveratrol (RSV) and pterostilbene (PTS), in BRUNOL5 transcriptional regulation. Methods Liver cancer cells, HepG2 and SkHep1, were treated with 15µM RSV or 10µM PTS for 9 days followed by the analysis of cell growth (trypan blue exclusion test), anchorage-independent growth (soft-agar assay), and invasiveness (Boyden chamber assay). The effect on BRUNOL5 promoter methylation and gene expression was assessed by pyrosequencing and QPCR, respectively. BRUNOL5 was then depleted in HepG2 cells using siRNA followed by RNA sequencing to establish gene expression profiles. Results BRUNOL5 was down-regulated by 95% in response to RSV and by 25–50% in response to PTS. This coincided with 10–15% hypermethylation of BRUNOL5 promoter. This effect on BRUNOL5 transcriptional regulation was associated with robust decrease in cell growth, anchorage independent growth and invasiveness. Interestingly, depletion of BRUNOL5 in HepG2 cells mimicked polyphenols’ anti-cancer effects. Further investigation by RNA sequencing in BRUNOL5-depleted cells established gene targets potentially regulated by BRUNOL5. We found 4,406 genes significantly differentially expressed in response to BRUNOL5 knockdown. The top downregulated genes included cancer-promoting genes such as FAIM2, AMOTL1, and MMP2; whereas tumor suppressor genes such as MT1G, CADH1, and ALDH1L1 were among genes with the highest upregulation. Conclusions Our findings demonstrate that BRUNOL5 is a novel target of stilbenoids and acts as an oncogene in liver cancer. RSV and PTS may exert their anti-cancer effects, at least partially, through BRUNOL5 downregulation. Funding Sources UBC VP Academic Award, CFI John. R. Evans Leaders Fund, and BC Knowledge Development Fund granted to BS


2020 ◽  
Author(s):  
Daniel Andrew Gideon

One of the most fundamental questions in biology pertains to how mechano-chemical energy is derived from metabolic fuels. In particular, how oxidation of NADH is linked to ATP synthesis in mitochondrial oxidative phosphorylation (mOxPhos) has been a topic of intense debate. Together, the Peter Mitchell-Paul Boyer proposals for mOxPhos are termed herein as “chemiosmotic rotary ATP synthesis” (or CRAS) model, which was recently defended/advocated by Pedro Silva in Biophysical Chemistry . Over the last two decades, Sunil Nath had questioned some aspects of the CRAS proposal, and made subtle alterations on the roles of Complex V and ions within the reaction scheme, and continues to advocate his framework as “two-ion torsional ATP synthesis” (abbreviated herein as TITAS) model in Biophysical Chemistry . Kelath Murali Manoj had revisited the data on the respiratory machinery’s structures/distributions and based on two-decades of evidence-based experimental research in redox enzymology of heme/flavin proteins, had formulated the murburn model for mOxPhos. In this work, the ETC-CRAS hypothesis and its off-shoot, the TITAS proposal, are questioned in the light of the convincing chemicophysical logic provided by the murburn hypothesis.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131
Author(s):  
Xiao Zhang ◽  
Namrata Tomar ◽  
Sunil M. Kandel ◽  
Said H. Audi ◽  
Allen W. Cowley ◽  
...  

Mitochondrial dehydrogenases are differentially stimulated by Ca2+. Ca2+ has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart. Our objective was, therefore, to elucidate these relationships in isolated mitochondria from the kidney outer medulla (OM) and heart. ADP-induced mitochondrial respiration was measured at different CaCl2 concentrations in the presence of various respiratory substrates, including pyruvate + malate (PM), glutamate + malate (GM), alpha-ketoglutarate + malate (AM), palmitoyl-carnitine + malate (PCM), and succinate + rotenone (SUC + ROT). The results showed that, in both heart and OM mitochondria, and for most complex I substrates, Ca2+ effects are biphasic: small increases in Ca2+ concentration stimulated, while large increases inhibited mitochondrial respiration. Furthermore, significant differences in substrate- and Ca2+-dependent O2 utilization towards ATP production between heart and OM mitochondria were observed. With PM and PCM substrates, Ca2+ showed more prominent stimulatory effects in OM than in heart mitochondria, while with GM and AM substrates, Ca2+ had similar biphasic regulatory effects in both OM and heart mitochondria. In contrast, with complex II substrate SUC + ROT, only inhibitory effects on mitochondrial respiration was observed in both the heart and the OM. We conclude that the regulatory effects of Ca2+ on mitochondrial OxPhos and ATP synthesis are biphasic, substrate-dependent, and tissue-specific.


1975 ◽  
Vol 34 (01) ◽  
pp. 042-049 ◽  
Author(s):  
Shuichi Hashimoto ◽  
Sachiko Shibata ◽  
Bokro Kobayashi

SummaryThe radioactive adenosine 3′,5′-monophosphate (cyclic AMP) level derived from 8-14C adenine in intact rabbit platelets decreased in the presence of mitochondrial inhibitor (potassium cyanide) or uncoupler (sodium azide), and markedly increased by the addition of NaF, monoiodoacetic acid (MIA), or 2-deoxy-D-glucose. The stimulative effect of the glycolytic inhibitors was distinctly enhanced by the simultaneous addition of sodium succinate. MIA did neither directly stimulate the adenyl cyclase activity nor inhibit the phosphodiesterase activity. These results suggest that cyclic AMP synthesis in platelets is closely linked to mitochondrial oxidative phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document