scholarly journals The Many Faces of Post-Ischemic Tau Protein in Brain Neurodegeneration of the Alzheimer’s Disease Type

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2213
Author(s):  
Ryszard Pluta ◽  
Stanisław J. Czuczwar ◽  
Sławomir Januszewski ◽  
Mirosław Jabłoński

Recent data suggest that post-ischemic brain neurodegeneration in humans and animals is associated with the modified tau protein in a manner typical of Alzheimer’s disease neuropathology. Pathological changes in the tau protein, at the gene and protein level due to cerebral ischemia, can lead to the development of Alzheimer’s disease-type neuropathology and dementia. Some studies have shown increased tau protein staining and gene expression in neurons following ischemia-reperfusion brain injury. Recent studies have found the tau protein to be associated with oxidative stress, apoptosis, autophagy, excitotoxicity, neuroinflammation, blood-brain barrier permeability, mitochondrial dysfunction, and impaired neuronal function. In this review, we discuss the interrelationship of these phenomena with post-ischemic changes in the tau protein in the brain. The tau protein may be at the intersection of many pathological mechanisms due to severe neuropathological changes in the brain following ischemia. The data indicate that an episode of cerebral ischemia activates the damage and death of neurons in the hippocampus in a tau protein-dependent manner, thus determining a novel and important mechanism for the survival and/or death of neuronal cells following ischemia. In this review, we update our understanding of proteomic and genomic changes in the tau protein in post-ischemic brain injury and present the relationship between the modified tau protein and post-ischemic neuropathology and present a positive correlation between the modified tau protein and a post-ischemic neuropathology that has characteristics of Alzheimer’s disease-type neurodegeneration.

2021 ◽  
Vol 13 ◽  
Author(s):  
Ryszard Pluta ◽  
Sławomir Januszewski ◽  
Stanisław J. Czuczwar

Transient ischemic brain injury causes massive neuronal death in the hippocampus of both humans and animals. This was accompanied by progressive atrophy of the hippocampus, brain cortex, and white matter lesions. Furthermore, it has been noted that neurodegenerative processes after an episode of ischemia-reperfusion in the brain can continue well-beyond the acute stage. Rarefaction of white matter was significantly increased in animals at 2 years following ischemia. Some rats that survived 2 years after ischemia developed severe brain atrophy with dementia. The profile of post-ischemic brain neurodegeneration shares a commonality with neurodegeneration in Alzheimer's disease. Furthermore, post-ischemic brain injury is associated with the deposition of folding proteins, such as amyloid and tau protein, in the intracellular and extracellular space. Recent studies on post-ischemic brain neurodegeneration have revealed the dysregulation of Alzheimer's disease-associated genes such as amyloid protein precursor, α-secretase, β-secretase, presenilin 1, presenilin 2, and tau protein. The latest data demonstrate that Alzheimer's disease-related proteins and their genes play a key role in the development of post-ischemic brain neurodegeneration with full-blown dementia in disease types such as Alzheimer's. Ongoing interest in the study of brain ischemia has provided evidence showing that ischemia may be involved in the development of the genotype and phenotype of Alzheimer's disease, suggesting that brain ischemia can be considered as a useful model for understanding the mechanisms responsible for the initiation of Alzheimer's disease.


2020 ◽  
Vol 21 (3) ◽  
pp. 892 ◽  
Author(s):  
Marzena Ułamek-Kozioł ◽  
Stanisław Jerzy Czuczwar ◽  
Sławomir Januszewski ◽  
Ryszard Pluta

Recent evidence suggests that transient ischemia of the brain with reperfusion in humans and animals is associated with the neuronal accumulation of neurotoxic molecules associated with Alzheimer’s disease, such as all parts of the amyloid protein precursor and modified tau protein. Pathological changes in the amyloid protein precursor and tau protein at the protein and gene level due to ischemia may lead to dementia of the Alzheimer’s disease type after ischemic brain injury. Some studies have demonstrated increased tau protein immunoreactivity in neuronal cells after brain ischemia-reperfusion injury. Recent research has presented many new tau protein functions, such as neural activity control, iron export, protection of genomic DNA integrity, neurogenesis and long-term depression. This review discusses the potential mechanisms of tau protein in the brain after ischemia, including oxidative stress, apoptosis, autophagy, excitotoxicity, neurological inflammation, endothelium, angiogenesis and mitochondrial dysfunction. In addition, attention was paid to the role of tau protein in damage to the neurovascular unit. Tau protein may be at the intersection of many regulatory mechanisms in the event of major neuropathological changes in ischemic stroke. Data show that brain ischemia activates neuronal changes and death in the hippocampus in a manner dependent on tau protein, thus determining a new and important way to regulate the survival and/or death of post-ischemic neurons. Meanwhile, the association between tau protein and ischemic stroke has not been well discussed. In this review, we aim to update the knowledge about the proteomic and genomic changes in tau protein following ischemia-reperfusion injury and the connection between dysfunctional tau protein and ischemic stroke pathology. Finally we present the positive correlation between tau protein dysfunction and the development of sporadic Alzheimer’s disease type of neurodegeneration.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 248
Author(s):  
Ryszard Pluta ◽  
Wanda Furmaga-Jabłońska ◽  
Sławomir Januszewski ◽  
Stanisław J. Czuczwar

For thousands of years, mankind has been using plant extracts or plants themselves as medicinal herbs. Currently, there is a great deal of public interest in naturally occurring medicinal substances that are virtually non-toxic, readily available, and have an impact on well-being and health. It has been noted that dietary curcumin is one of the regulators that may positively influence changes in the brain after ischemia. Curcumin is a natural polyphenolic compound with pleiotropic biological properties. The observed death of pyramidal neurons in the CA1 region of the hippocampus and its atrophy are considered to be typical changes for post-ischemic brain neurodegeneration and for Alzheimer’s disease. Additionally, it has been shown that one of the potential mechanisms of severe neuronal death is the accumulation of neurotoxic amyloid and dysfunctional tau protein after cerebral ischemia. Post-ischemic studies of human and animal brains have shown the presence of amyloid plaques and neurofibrillary tangles. The significant therapeutic feature of curcumin is that it can affect the aging-related cellular proteins, i.e., amyloid and tau protein, preventing their aggregation and insolubility after ischemia. Curcumin also decreases the neurotoxicity of amyloid and tau protein by affecting their structure. Studies in animal models of cerebral ischemia have shown that curcumin reduces infarct volume, brain edema, blood-brain barrier permeability, apoptosis, neuroinflammation, glutamate neurotoxicity, inhibits autophagy and oxidative stress, and improves neurological and behavioral deficits. The available data suggest that curcumin may be a new therapeutic substance in both regenerative medicine and the treatment of neurodegenerative disorders such as post-ischemic neurodegeneration.


2018 ◽  
Vol 19 (12) ◽  
pp. 4002 ◽  
Author(s):  
Ryszard Pluta ◽  
Marzena Ułamek-Kozioł ◽  
Stanisław Czuczwar

In recent years, ongoing interest in ischemic brain injury research has provided data showing that ischemic episodes are involved in the development of Alzheimer’s disease-like neuropathology. Brain ischemia is the second naturally occurring neuropathology, such as Alzheimer’s disease, which causes the death of neurons in the CA1 region of the hippocampus. In addition, brain ischemia was considered the most effective predictor of the development of full-blown dementia of Alzheimer’s disease phenotype with a debilitating effect on the patient. Recent knowledge on the activation of Alzheimer’s disease-related genes and proteins—e.g., amyloid protein precursor and tau protein—as well as brain ischemia and Alzheimer’s disease neuropathology indicate that similar processes contribute to neuronal death and disintegration of brain tissue in both disorders. Although brain ischemia is one of the main causes of death in the world, there is no effective therapy to improve the structural and functional outcomes of this disorder. In this review, we consider the promising role of the protective action of curcumin after ischemic brain injury. Studies of the pharmacological properties of curcumin after brain ischemia have shown that curcumin has several therapeutic properties that include anti-excitotoxic, anti-oxidant, anti-apoptotic, anti-hyperhomocysteinemia and anti-inflammatory effects, mitochondrial protection, as well as increasing neuronal lifespan and promoting neurogenesis. In addition, curcumin also exerts anti-amyloidogenic effects and affects the brain’s tau protein. These results suggest that curcumin may be able to serve as a potential preventive and therapeutic agent in neurodegenerative brain disorders.


2020 ◽  
Vol 21 (9) ◽  
pp. 3186 ◽  
Author(s):  
Ryszard Pluta ◽  
Marzena Ułamek-Kozioł ◽  
Sławomir Januszewski ◽  
Stanisław J. Czuczwar

Post-ischemic brain damage is associated with the deposition of folding proteins such as the amyloid and tau protein in the intra- and extracellular spaces of brain tissue. In this review, we summarize the protein changes associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after ischemia-reperfusion brain injury and their role in the post-ischemic injury. Recent advances in understanding the post-ischemic neuropathology have revealed dysregulation of amyloid protein precursor, α-secretase, β-secretase, presenilin 1 and 2, and tau protein genes after ischemic brain injury. However, reduced expression of the α-secretase in post-ischemic brain causes neurons to be less resistant to injury. In this review, we present the latest evidence that proteins associated with Alzheimer’s disease and their genes play a key role in progressive brain damage due to ischemia and reperfusion, and that an ischemic episode is an essential and leading supplier of proteins and genes associated with Alzheimer’s disease in post-ischemic brain. Understanding the underlying processes of linking Alzheimer’s disease-related proteins and their genes in post-ischemic brain injury with the risk of developing Alzheimer’s disease will provide the most significant goals for therapeutic development to date.


2021 ◽  
pp. 153537022110568
Author(s):  
Natalia V Bobkova ◽  
Daria Y Zhdanova ◽  
Natalia V Belosludtseva ◽  
Nikita V Penkov ◽  
Galina D Mironova

Here, we found that functionally active mitochondria isolated from the brain of NMRI donor mice and administrated intranasally to recipient mice penetrated the brain structures in a dose-dependent manner. The injected mitochondria labeled with the MitoTracker Red localized in different brain regions, including the neocortex and hippocampus, which are responsible for memory and affected by degeneration in patients with Alzheimer's disease. In behavioral experiments, intranasal microinjections of brain mitochondria of native NMRI mice improved spatial memory in the olfactory bulbectomized (OBX) mice with Alzheimer’s type degeneration. Control OBX mice demonstrated loss of spatial memory tested in the Morris water maze. Immunocytochemical analysis revealed that allogeneic mitochondria colocalized with the markers of astrocytes and neurons in hippocampal cell culture. The results suggest that a non-invasive route intranasal administration of mitochondria may be a promising approach to the treatment of neurodegenerative diseases characterized, like Alzheimer's disease, by mitochondrial dysfunction.


Open Biology ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 210013
Author(s):  
Vyshnavy Balendra ◽  
Sandeep Kumar Singh

Oxidative stress, the imbalance of the antioxidant system, results in an accumulation of neurotoxic proteins in Alzheimer's disease (AD). The antioxidant system is composed of exogenous and endogenous antioxidants to maintain homeostasis. Superoxide dismutase (SOD) is an endogenous enzymatic antioxidant that converts superoxide ions to hydrogen peroxide in cells. SOD supplementation in mice prevented cognitive decline in stress-induced cells by reducing lipid peroxidation and maintaining neurogenesis in the hippocampus. Furthermore, SOD decreased expression of BACE1 while reducing plaque burden in the brain. Additionally, Astaxanthin (AST), a potent exogenous carotenoid, scavenges superoxide anion radicals. Mice treated with AST showed slower memory decline and decreased depositions of amyloid-beta (A β ) and tau protein. Currently, the neuroprotective potential of these supplements has only been examined separately in studies. However, a single antioxidant cannot sufficiently resist oxidative damage to the brain, therefore, a combinatory approach is proposed as a relevant therapy for ameliorating pathological changes in AD.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Shibin Du ◽  
Youliang Deng ◽  
Hongjie Yuan ◽  
Yanyan Sun

Inflammation had showed its important role in the pathogenesis of cerebral ischemia and secondary damage. Safflower yellow B (SYB) had neuroprotective effects against oxidative stress-induced brain injuries, but the mechanisms were still largely unknown to us. In this study, we tried to investigate the anti-inflammation effects of SYB and the possible roles of AMPK/NF-κB signaling pathway on these protective effects. In vivo, brain ischemia/reperfusion (I/R) was induced by transient middle cerebral artery occlusion for 2 h and reperfusion for 20 h. Neurofunctional evaluation, infarction area, and brain water contents were measured. Brain injury markers and inflammatory cytokines levels were measured by ELISA kits. In vitro, cell viability, apoptosis, and LDH leakage were measured after I/R in PC12 cells. The expression and phosphorylation levels of AMPK, NF-κB p65, and P-IκB-α in cytoplasm and nuclear were measured by Western blotting. SiRNA experiment was performed to certify the role of AMPK. The results showed SYB reduced infarct size, improved neurological outcomes, and inhibited brain injury after I/R. In vitro test, SYB treatment alleviated PC12 cells injury and apoptosis and inhibited the inflammatory cytokines (IL-1, IL-6, TNF-α, and COX-2) in a dose-dependent manner. SYB treatment induced AMPK phosphorylation and inhibited NF-κB p65 nuclear translocation both in brain and in PC12 cells. Further studies also showed that the inhibition of NF-κB activity of SYB was through AMPK. In conclusion, SYB protected brain I/R injury through reducing expression of inflammatory cytokines and this effect might be partly due to the inhibition of NF-κB mediated by AMPK.


2015 ◽  
Vol 36 (4) ◽  
pp. 1539-1551 ◽  
Author(s):  
Qian Yu ◽  
Zhihong Lu ◽  
Lei Tao ◽  
Lu Yang ◽  
Yu Guo ◽  
...  

Background/Aims: Stroke is among the top causes of death worldwide. Neuroprotective agents are thus considered as potentially powerful treatment of stroke. Methods: Using both HT22 cells and male Sprague-Dawley rats as in vitro and in vivo models, we investigated the effect of NaHS, an exogenous donor of H2S, on the focal cerebral ischemia-reperfusion (I/R) induced brain injury. Results: Administration of NaHS significantly decreased the brain infarcted area as compared to the I/R group in a dose-dependent manner. Mechanistic studies demonstrated that NaHS-treated rats displayed significant reduction of malondialdehyde content, and strikingly increased activity of superoxide dismutases and glutathione peroxidase in the brain tissues compared with I/R group. The enhanced antioxidant capacity as well as restored mitochondrial function are NaHS-treatment correlated with decreased cellular reactive oxygen species level and compromised apoptosis in vitro or in vivo in the presence of NaHS compared with control. Further analysis revealed that the inhibition of PARP-1 cleavage and AIF translocation are involved in the neuroprotective effects of NaHS. Conclusion: Collectively, our results suggest that NaHS has potent protective effects against the brain injury induced by I/R. NaHS is possibly effective through inhibition of oxidative stress and apoptosis.


2016 ◽  
Vol 37 (7) ◽  
pp. 2441-2457 ◽  
Author(s):  
Hiroki Fujii ◽  
Tetsuya Takahashi ◽  
Tomoya Mukai ◽  
Shigeru Tanaka ◽  
Naohisa Hosomi ◽  
...  

Epidemiological studies have suggested a close relationship between cerebral ischemia and Alzheimer’s disease (AD). To clarify the pathological association of tau dynamics in both diseases, we performed comprehensive studies on the posttranslational modification of tau in cerebral ischemia and reperfusion (I/R) in rats. The present study suggests that both 4-repeat and 3-repeat tau isoforms are hyperphosphorylated in cerebral I/R, similar to the case in AD. The generation of a 60-kDa Asp421-truncated tau in cerebral I/R preceded the emergence of a 17-kDa 3-repeat tau fragment and a 25-kDa 4-repeat tau fragment. The regional redistribution of tau from the neuropil to neuronal perikarya in our stroke model is thought to share similarity with that occurring in AD. In addition, immunofluorescence staining revealed the formation of axonal varicosities in cerebral I/R. Altered tau distribution may influence microtubule stability, disturbances in axonal transport, and the resulting formation of axonal varicosities. The staining profiles of granules in the ischemic cortex that were immunopositive for RD3, RD4, and AT8 in neuronal perikarya and that were argyrophilic on Gallyas-Braak staining were similar to those in AD. These findings suggest that transient cerebral ischemia shares a common pathology with AD, in the modification of tau protein.


Sign in / Sign up

Export Citation Format

Share Document