scholarly journals D-2-Hydroxyglutarate in Glioma Biology

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2345
Author(s):  
Fu-Ju Chou ◽  
Yang Liu ◽  
Fengchao Lang ◽  
Chunzhang Yang

Isocitrate dehydrogenase (IDH) mutations are common genetic abnormalities in glioma, which result in the accumulation of an “oncometabolite”, D-2-hydroxyglutarate (D-2-HG). Abnormally elevated D-2-HG levels result in a distinctive pattern in cancer biology, through competitively inhibiting α-ketoglutarate (α-KG)/Fe(II)-dependent dioxgenases (α-KGDDs). Recent studies have revealed that D-2-HG affects DNA/histone methylation, hypoxia signaling, DNA repair, and redox homeostasis, which impacts the oncogenesis of IDH-mutated cancers. In this review, we will discuss the current understanding of D-2-HG in cancer biology, as well as the emerging opportunities in therapeutics in IDH-mutated glioma.

Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 294 ◽  
Author(s):  
Yang Liu ◽  
Fengchao Lang ◽  
Fu-Ju Chou ◽  
Kareem A. Zaghloul ◽  
Chunzhang Yang

Mutations in isocitrate dehydrogenase (IDH) are commonly observed in lower-grade glioma and secondary glioblastomas. IDH mutants confer a neomorphic enzyme activity that converts α-ketoglutarate to an oncometabolite D-2-hydroxyglutarate, which impacts cellular epigenetics and metabolism. IDH mutation establishes distinctive patterns in metabolism, cancer biology, and the therapeutic sensitivity of glioma. Thus, a deeper understanding of the roles of IDH mutations is of great value to improve the therapeutic efficacy of glioma and other malignancies that share similar genetic characteristics. In this review, we focused on the genetics, biochemistry, and clinical impacts of IDH mutations in glioma.


2020 ◽  
Author(s):  
Carla Umansky ◽  
Agustín Morellato ◽  
Marco Scheidegger ◽  
Matthias Rieckher ◽  
Manuela R. Martinefski ◽  
...  

AbstractFormaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking. We show here that FA can cause cellular damage beyond genotoxicity by triggering oxidative stress, which is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR). Mechanistically, we determine that endogenous FA reacts with the redox-active thiol group of glutathione (GSH) forming S-hydroxymethyl-GSH, which is metabolized by ADH5 yielding reduced GSH thus preventing redox disruption. We identify the ADH5-ortholog gene in Caenorhabditis elegans and show that oxidative stress also underlies FA toxicity in nematodes. Moreover, we show that endogenous GSH can protect cells lacking the Fanconi Anemia DNA repair pathway from FA, which might have broad implications for Fanconi Anemia patients and for healthy BRCA2-mutation carriers. We thus establish a highly conserved mechanism through which endogenous FA disrupts the GSH-regulated cellular redox homeostasis that is critical during development and aging.


2019 ◽  
Vol 35 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Lauren E. Foley ◽  
Patrick Emery

CRYPTOCHROMES (CRYs) are structurally related to ultraviolet (UV)/blue-sensitive DNA repair enzymes called photolyases but lack the ability to repair pyrimidine dimers generated by UV exposure. First identified in plants, CRYs have proven to be involved in light detection and various light-dependent processes in a broad range of organisms. In Drosophila, CRY’s best understood role is the cell-autonomous synchronization of circadian clocks. However, CRY also contributes to the amplitude of circadian oscillations in a light-independent manner, controls arousal and UV avoidance, influences visual photoreception, and plays a key role in magnetic field detection. Here, we review our current understanding of the mechanisms underlying CRY’s various circadian and noncircadian functions in fruit flies.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaoyan Liu ◽  
Yuping Gong

Abstract Isocitrate dehydrogenase (IDH) is a key enzyme involved in the conversion of isocitrate to α-ketoglutarate (α-KG) in the tricarboxylic acid (TCA) cycle. IDH mutation produces a neomorphic enzyme, which can lead to the abnormal accumulation of R-2-HG and promotes leukemogenesis. IDH mutation occurs in 20% of acute myeloid leukemia (AML) patients, mainly including IDH1 R132, IDH2 R140, and IDH2 R172. Different mutant isoforms have different prognostic values. In recent years, IDH inhibitors have shown good clinical response in AML patients. Hence, enasidenib and ivosidenib, the IDH2 and IDH1 inhibitors developed by Agios Pharmaceuticals, have been approved by the Food and Drug Administration on 1 August 2017 and 20 July 2018 for the treatment of adult relapsed or refractory (R/R) AML with IDH2 and IDH1 mutations, respectively. IDH inhibitor monotherapy for R/R AML is efficacious and safe; however, there are problems, such as primary or acquired resistance. Clinical trials of IDH inhibitors combined with hypomethylating agents or standard chemotherapy for the treatment of R/R AML or newly diagnosed AML, as well as in post hematopoietic stem cell transplantation as maintenance therapy, are ongoing. This article summarizes the use of IDH inhibitors in AML with IDH mutations.


2017 ◽  
Vol 71 (3) ◽  
pp. 417-425 ◽  
Author(s):  
Joaquin Mateo ◽  
Gunther Boysen ◽  
Christopher E. Barbieri ◽  
Helen E. Bryant ◽  
Elena Castro ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1918 ◽  
Author(s):  
Sanne Venneker ◽  
Alwine B. Kruisselbrink ◽  
Inge H. Briaire-de Bruijn ◽  
Yvonne de Jong ◽  
Andre J. van Wijnen ◽  
...  

Chondrosarcomas are chemo- and radiotherapy resistant and frequently harbor mutations in isocitrate dehydrogenase (IDH1 or IDH2), causing increased levels of D-2-hydroxyglutarate (D-2-HG). DNA repair defects and synthetic lethality with poly(ADP-ribose) polymerase (PARP) inhibition occur in IDH mutant glioma and leukemia models. Here we evaluated DNA repair and PARP inhibition, alone or combined with chemo- or radiotherapy, in chondrosarcoma cell lines with or without endogenous IDH mutations. Chondrosarcoma cell lines treated with the PARP inhibitor talazoparib were examined for dose–response relationships, as well as underlying cell death mechanisms and DNA repair functionality. Talazoparib was combined with chemo- or radiotherapy to evaluate potential synergy. Cell lines treated long term with an inhibitor normalizing D-2-HG levels were investigated for synthetic lethality with talazoparib. We report that talazoparib sensitivity was variable and irrespective of IDH mutation status. All cell lines expressed Ataxia Telangiectasia Mutated (ATM), but a subset was impaired in poly(ADP-ribosyl)ation (PARylation) capacity, homologous recombination, and O-6-methylguanine-DNA methyltransferase (MGMT) expression. Talazoparib synergized with temozolomide or radiation, independent of IDH1 mutant inhibition. This study suggests that talazoparib combined with temozolomide or radiation are promising therapeutic strategies for chondrosarcoma, irrespective of IDH mutation status. A subset of chondrosarcomas may be deficient in nonclassical DNA repair pathways, suggesting that PARP inhibitor sensitivity is multifactorial in chondrosarcoma.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3869
Author(s):  
Kinga Linowiecka ◽  
Marek Foksinski ◽  
Anna A. Brożyna

Vitamin C is implicated in various bodily functions due to its unique properties in redox homeostasis. Moreover, vitamin C also plays a great role in restoring the activity of 2-oxoglutarate and Fe2+ dependent dioxygenases (2-OGDD), which are involved in active DNA demethylation (TET proteins), the demethylation of histones, and hypoxia processes. Therefore, vitamin C may be engaged in the regulation of gene expression or in a hypoxic state. Hence, vitamin C has acquired great interest for its plausible effects on cancer treatment. Since its conceptualization, the role of vitamin C in cancer therapy has been a controversial and disputed issue. Vitamin C is transferred to the cells with sodium dependent transporters (SVCTs) and glucose transporters (GLUT). However, it is unknown whether the impaired function of these transporters may lead to carcinogenesis and tumor progression. Notably, previous studies have identified SVCTs’ polymorphisms or their altered expression in some types of cancer. This review discusses the potential effects of vitamin C and the impaired SVCT function in cancers. The variations in vitamin C transporter genes may regulate the active transport of vitamin C, and therefore have an impact on cancer risk, but further studies are needed to thoroughly elucidate their involvement in cancer biology.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Brad Evans ◽  
Erin Griner ◽  

The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (<xref ref-type="bibr" rid="bib3">Errington et al., 2014</xref>). This Registered report describes the proposed replication plan of key experiments from ‘Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases’ by Xu and colleagues, published in Cancer Cell in 2011 (<xref ref-type="bibr" rid="bib15">Xu et al., 2011</xref>). The key experiments being replicated include Supplemental Figure 3I, which demonstrates that transfection with mutant forms of IDH1 increases levels of 2-hydroxyglutarate (2-HG), Figures 3A and 8A, which demonstrate changes in histone methylation after treatment with 2-HG, and Figures 3D and 7B, which show that mutant IDH1 can effect the same changes as treatment with excess 2-HG. The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published by eLife.


Sign in / Sign up

Export Citation Format

Share Document