scholarly journals Catalpol Protects ARPE-19 Cells against Oxidative Stress via Activation of the Keap1/Nrf2/ARE Pathway

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2635
Author(s):  
Longtai You ◽  
Hulinyue Peng ◽  
Jing Liu ◽  
Mengru Cai ◽  
Huimin Wu ◽  
...  

Oxidative damage to retinal pigment epithelial (RPE) has been identified as one of the major regulatory factors in the pathogenesis of age-related macular degeneration (AMD). Catalpol is an iridoid glucoside compound that has been found to possess potential antioxidant activity. In the present study, we aimed to investigate the protective effect of catalpol on RPE cells under oxidative stress and to elucidate the potential molecular mechanism involved. We found that catalpol significantly attenuated hydrogen peroxide (H2O2)-induced cytotoxicity, G0/G1 phase cell cycle arrest, and apoptosis in RPE cells. The overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA) stimulated by oxidative stress and the corresponding reductions in antioxidant glutathione (GSH) and superoxide dismutase (SOD) levels were largely reversed by catalpol pretreatment. Moreover, catalpol pretreatment markedly activated the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and its downstream antioxidant enzymes, catalase (CAT), heme oxygenase-1 (HO-1), and NADPH dehydrogenase (NQO1). It also increased the expression levels of cyclin E Bcl-2, cyclin A, and cyclin-dependent kinase 2 (CDK2) and decreased the expression levels of Bax, Fas, cleaved PARP, p-p53, and p21 cleaved caspase-3, 8, and 9. The oxidative stress-induced formation of the Keap1/Nrf2 complex in the cytoplasm was significantly blocked by catalpol pretreatment. These results indicate that catalpol protected RPE cells from oxidative stress through a mechanism involving the activation of the Keap1/Nrf2/ARE pathways and the inactivation of oxidative stress-mediated pathways of apoptosis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rawshan Choudhury ◽  
Nadhim Bayatti ◽  
Richard Scharff ◽  
Ewa Szula ◽  
Viranga Tilakaratna ◽  
...  

AbstractRetinal pigment epithelial (RPE) cells that underlie the neurosensory retina are essential for the maintenance of photoreceptor cells and hence vision. Interactions between the RPE and their basement membrane, i.e. the inner layer of Bruch’s membrane, are essential for RPE cell health and function, but the signals induced by Bruch’s membrane engagement, and their contributions to RPE cell fate determination remain poorly defined. Here, we studied the functional role of the soluble complement regulator and component of Bruch’s membrane, Factor H-like protein 1 (FHL-1). Human primary RPE cells adhered to FHL-1 in a manner that was eliminated by either mutagenesis of the integrin-binding RGD motif in FHL-1 or by using competing antibodies directed against the α5 and β1 integrin subunits. These short-term experiments reveal an immediate protein-integrin interaction that were obtained from primary RPE cells and replicated using the hTERT-RPE1 cell line. Separate, longer term experiments utilising RNAseq analysis of hTERT-RPE1 cells bound to FHL-1, showed an increased expression of the heat-shock protein genes HSPA6, CRYAB, HSPA1A and HSPA1B when compared to cells bound to fibronectin (FN) or laminin (LA). Pathway analysis implicated changes in EIF2 signalling, the unfolded protein response, and mineralocorticoid receptor signalling as putative pathways. Subsequent cell survival assays using H2O2 to induce oxidative stress-induced cell death suggest hTERT-RPE1 cells had significantly greater protection when bound to FHL-1 or LA compared to plastic or FN. These data show a non-canonical role of FHL-1 in protecting RPE cells against oxidative stress and identifies a novel interaction that has implications for ocular diseases such as age-related macular degeneration.


2018 ◽  
Vol 19 (8) ◽  
pp. 2317 ◽  
Author(s):  
Kai Kaarniranta ◽  
Jakub Kajdanek ◽  
Jan Morawiec ◽  
Elzbieta Pawlowska ◽  
Janusz Blasiak

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.


2019 ◽  
Vol 51 (10) ◽  
pp. 1-13 ◽  
Author(s):  
Min Ji Cho ◽  
Sung-Jin Yoon ◽  
Wooil Kim ◽  
Jongjin Park ◽  
Jangwook Lee ◽  
...  

Abstract The disruption of the retinal pigment epithelium (RPE), for example, through oxidative damage, is a common factor underlying age-related macular degeneration (AMD). Aberrant autophagy also contributes to AMD pathology, as autophagy maintains RPE homeostasis to ensure blood–retinal barrier (BRB) integrity and protect photoreceptors. Thioredoxin-interacting protein (TXNIP) promotes cellular oxidative stress by inhibiting thioredoxin reducing capacity and is in turn inversely regulated by reactive oxygen species levels; however, its role in oxidative stress-induced RPE cell dysfunction and the mechanistic link between TXNIP and autophagy are largely unknown. Here, we observed that TXNIP expression was rapidly downregulated in RPE cells under oxidative stress and that RPE cell proliferation was decreased. TXNIP knockdown demonstrated that the suppression of proliferation resulted from TXNIP depletion-induced autophagic flux, causing increased p53 activation via nuclear localization, which in turn enhanced AMPK phosphorylation and activation. Moreover, TXNIP downregulation further negatively impacted BRB integrity by disrupting RPE cell tight junctions and enhancing cell motility by phosphorylating, and thereby activating, Src kinase. Finally, we also revealed that TXNIP knockdown upregulated HIF-1α, leading to the enhanced secretion of VEGF from RPE cells and the stimulation of angiogenesis in cocultured human retinal microvascular endothelial cells. This suggests that the exposure of RPE cells to sustained oxidative stress may promote choroidal neovascularization, another AMD pathology. Together, these findings reveal three distinct mechanisms by which TXNIP downregulation disrupts RPE cell function and thereby exacerbates AMD pathogenesis. Accordingly, reinforcing or restoring BRB integrity by targeting TXNIP may serve as an effective therapeutic strategy for preventing or attenuating photoreceptor damage in AMD.


2020 ◽  
Author(s):  
Rawshan Choudhury ◽  
Nadhim Bayatti ◽  
Richard Scharff ◽  
Ewa Szula ◽  
Viranga Tilakaratna ◽  
...  

AbstractRetinal pigment epithelial (RPE) cells that underlie the neurosensory retina are essential for the maintenance of photoreceptor cells and hence vision. Interactions between the RPE and their basement membrane, i.e. the inner layer of Bruch’s membrane, are essential for RPE cell health and function, but the signals induced by Bruch’s membrane engagement, and their contributions to RPE cell fate determination remain poorly defined. Here, we studied the functional role of the soluble complement regulator and component of Bruch’s membrane, Factor H-like protein 1 (FHL-1). Human primary RPE cells adhered to FHL-1 in a manner that was eliminated by either mutagenesis of the integrin-binding RGD motif in FHL-1 or by using competing antibodies directed against the α5 and β1 integrin subunits. The results obtained from primary RPE cells were replicated using the hTERT-RPE cell line. RNAseq expression analysis of hTERT-RPE cells bound to FHL-1 showed an increased expression of the heat-shock protein genes HSPA6, CRYAB, HSPA1A and HSPA1B when compared to cells bound to fibronectin (FN) or laminin (LA). Pathway analysis implicated changes in EIF2 signalling, the unfolded protein response, and mineralocorticoid receptor signalling as putative pathways. Subsequent cell survival assays using H2O2 to induce oxidative stress-induced cell death showed hTERT-RPE cells had significantly greater protection when bound to FHL-1 or LA compared to plastic or FN. These data show a non-canonical role of FHL-1 in protecting RPE cells against oxidative stress and identifies a novel interaction that has implications for ocular diseases such as age-related macular degeneration.


2020 ◽  
Author(s):  
MYUNG HEE KIM ◽  
Dae Hyun Kim ◽  
Su Geun Yang ◽  
Dae Yu Kim

Abstract Background: Oxidative damage in retinal pigmented epithelium (RPE) cells contributes to the development of age-related macular degeneration, which is among the leading causes of visual loss in elderly people. In the present study, we evaluated the protective role of TPP-Niacin against the hydrogen peroxide (H2O2)-induced oxidative stress to RPE cells. Methods: The cellular viability, lactate dehydrogenase, reactive oxygen species (ROS), and mitochondrial function were determined in the retinal ARPE-19 cells under the treatment with H2O2 or pre-treatment with TPP-Niacin. The expression level of mitochondrial related genes and some transcription factors were assessed using real-time polymerase chain reaction (RT-PCR). Results: TPP-Niacin significantly improved cell viability reduction, reduced ROS generation and increased the antioxidant enzymes in H2O2-treated ARPE-19 cells. Mitochondrial dysfunction from H2O2-induced oxidative stress was also significantly diminished by the TPP-Niacin treatment, reduced generation of ROS, an ameliorated reduction of mitochondrial membrane potential (MMP) and an upregulated mitochondrial associated gene. In addition, TPP-Niacin markedly enhanced the expression of transcription factors (PGC-1α and NRF2) and antioxidant associated genes (especially, HO-1 and NQO-1). Conclusion: We proved the protective effect of TPP-Niacin against H2O2-induced oxidative stress in RPE cells. TPP-Niacin is believed to have played a protective role against mitochondrial dysfunction by up-regulating antioxidant-related genes such as PGC-1α, NRF2, HO-1 and NQO-1 in RPE cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Samuel Abokyi ◽  
Sze wan Shan ◽  
Chi-ho To ◽  
Henry Ho-lung Chan ◽  
Dennis Yan-yin Tse

Trehalose is a natural dietary molecule that has shown antiaging and neuroprotective effects in several animal models of neurodegenerative diseases. The role of trehalose in the management of age-related macular degeneration (AMD) is yet to be investigated and whether trehalose could be a remedy for the treatment of diseases linked to oxidative stress and NRF2 dysregulation. Here, we showed that incubation of human retinal pigment epithelial (RPE) cells with trehalose enhanced the mRNA and protein expressions of TFEB, autophagy genes ATG5 and ATG7, as well as protein expressions of macroautophagy markers, LC3B and p62/SQTM1, and the chaperone-mediated autophagy (CMA) receptor LAMP2. Cathepsin D, a hydrolytic lysosomal enzyme, was also increased by trehalose, indicating higher proteolytic activity. Moreover, trehalose upregulated autophagy flux evident by an increase in the endogenous LC3B level, and accumulation of GFP-LC3B puncta and free GFP fragments in GFP-LC3 ̶ expressing cells in the presence of chloroquine. In addition, the mRNA levels of key molecular targets implicated in RPE damage and AMD, such as vascular endothelial growth factor- (VEGF-) A and heat shock protein 27 (HSP27), were downregulated, whereas NRF2 was upregulated by trehalose. Subsequently, we mimicked in vitro AMD conditions using hydroquinone (HQ) as the oxidative insult on RPE cells and evaluated the cytoprotective effect of trehalose compared to vehicle treatment. HQ depleted NRF2, increased oxidative stress, and reduced the viability of cells, while trehalose pretreatment protected against HQ-induced toxicity. The cytoprotection by trehalose was dependent on autophagy but not NRF2 activation, since autophagy inhibition by shRNA knockdown of ATG5 led to a loss of the protective effect. The results support the transcriptional upregulation of TFEB and autophagy by trehalose and its protection against HQ-induced oxidative damage in RPE cells. Further investigation is, therefore, warranted into the therapeutic value of trehalose in alleviating AMD and retinal diseases associated with impaired NRF2 antioxidant defense.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Elzbieta Pawlowska ◽  
Joanna Szczepanska ◽  
Ali Koskela ◽  
Kai Kaarniranta ◽  
Janusz Blasiak

Age-related macular degeneration (AMD) is a multifactorial disease of the retina featured by degeneration and loss of photoreceptors and retinal pigment epithelium (RPE) cells with oxidative stress playing a role in its pathology. Although systematic reviews do not support the protective role of diet rich in antioxidants against AMD, dietary polyphenols (DPs) have been reported to have beneficial effects on vision. Some of them, such as quercetin and cyanidin-3-glucoside, can directly scavenge reactive oxygen species (ROS) due to the presence of two hydroxyl groups in their B ring structure. Apart from direct ROS scavenging, DPs can lower oxidative stress in several other pathways. Many DPs induce NRF2 (nuclear factor, erythroid 2-like 2) activation and expression of phase II enzymes that are under transcriptional control of this factor. DPs can inhibit A2E photooxidation in RPE cells, which is a source of oxidative stress. Anti-inflammatory action of DPs in RPE cells is associated with regulation of various interleukins and signaling pathways, including IL-6/JAK2 (Janus kinase 2)/STAT3. Some DPs can improve impaired cellular waste clearance, including AMD-specific deficient phagocytosis of the Aβ42 peptide and autophagy.


2019 ◽  
Vol 20 (13) ◽  
pp. 3367 ◽  
Author(s):  
Chawanphat Muangnoi ◽  
Umar Sharif ◽  
Pahweenvaj Ratnatilaka Na Bhuket ◽  
Pornchai Rojsitthisak ◽  
Luminita Paraoan

Oxidative stress-induced damage to the retinal pigmented epithelium (RPE), a specialised post-mitotic monolayer that maintains retinal homeostasis, contributes to the development of age-related macular degeneration (AMD). Curcumin (Cur), a naturally occurring antioxidant, was previously shown to have the ability to protect RPE cells from oxidative stress. However, poor solubility and bioavailability makes Cur a poor therapeutic agent. As prodrug approaches can mitigate these limitations, we compared the protective properties of the Cur prodrug curcumin diethyl disuccinate (CurDD) against Cur in relation to oxidative stress induced in human ARPE-19 cells. Both CurDD and Cur significantly decreased H2O2-induced reactive oxygen species (ROS) production and protected RPE cells from oxidative stress-induced death. Both drugs exerted their protective effects through the modulation of p44/42 (ERK) and the involvement of downstream molecules Bax and Bcl-2. Additionally, the expression of antioxidant enzymes HO-1 and NQO1 was also enhanced in cells treated with CurDD and Cur. In all cases, CurDD was more effective than its parent drug against oxidative stress-induced damage to ARPE-19 cells. These findings highlight CurDD as a more potent drug compared to Cur against oxidative stress and indicate that its protective effects are exerted through modulation of key apoptotic and antioxidant molecular pathways.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Myung Hee Kim ◽  
Do-Hun Kim ◽  
Su Geun Yang ◽  
Dae Yu Kim

Abstract Background Oxidative damage to retinal pigment epithelial (RPE) cells contributes to the development of age-related macular degeneration, which is among the leading causes of visual loss in elderly people. In the present study, we evaluated the protective role of triphenylphosphonium (TPP)-Niacin against hydrogen peroxide (H2O2)-induced oxidative stress in RPE cells. Methods The cellular viability, lactate dehydrogenase release, reactive oxygen species (ROS) generation, and mitochondrial function of retinal ARPE-19 cells were determined under treatment with H2O2 or pre-treatment with TPP-Niacin. The expression level of mitochondrial related genes and some transcription factors were assessed using real-time polymerase chain reaction (RT-qPCR). Results TPP-Niacin significantly improved cell viability, reduced ROS generation, and increased the antioxidant enzymes in H2O2-treated ARPE-19 cells. Mitochondrial dysfunction from the H2O2-induced oxidative stress was also considerably diminished by TPP-Niacin treatment, along with reduction of the mitochondrial membrane potential (MMP) and upregulation of the mitochondrial-associated gene. In addition, TPP-Niacin markedly enhanced the expression of transcription factors (PGC-1α and NRF2) and antioxidant-associated genes (especially HO-1 and NQO-1). Conclusion We verified the protective effect of TPP-Niacin against H2O2-induced oxidative stress in RPE cells. TPP-Niacin is believed to protect against mitochondrial dysfunction by upregulating antioxidant-related genes, such as PGC-1α, NRF2, HO-1, and NQO-1, in RPE cells.


Author(s):  
Xiaohuan Zhao ◽  
Min Gao ◽  
Jian Liang ◽  
Yuhong Chen ◽  
Yimin Wang ◽  
...  

In age-related macular degeneration (AMD), one of the principal sources of vascular endothelial growth factor (VEGF) is retinal pigment epithelium (RPE) cells under hypoxia or oxidative stress. Solute carrier family 7 member 11 (SLC7A11), a key component of cystine/glutamate transporter, regulates the level of cellular lipid peroxidation, and restrains ferroptosis. In our study, we assessed the role of SLC7A11 in laser-induced choroidal neovascularization (CNV) and explored the underlying mechanism. We established a mouse model of CNV to detect the expression level of SLC7A11 and VEGF during disease progression. We found the expression of the SLC7A11 protein in RPE cells peaked at 3 days after laser treatment, which was correlated with the expression of VEGF. Intraperitoneal injection of SLC7A11 inhibitor expanded the area of CNV. We examined functional proteins related to oxidative stress and Fe2+ and found laser-induced ferroptosis accompanied by increased Fe2+ content and GPX4 expression in the RPE-choroidal complex after laser treatment. We verified the expression of SLC7A11 in the ARPE19 cell line and the effects of its inhibitors on cell viability and lipid peroxidation in vitro. Application of SLC7A11 inhibitor and SLC7A11 knockdown increased the level of lipid peroxidation and reduced the cell viability of ARPE19 which can be rescued by ferroptosis inhibitors ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1). Conversely, SLC7A11 overexpression induced resistance to erastin or RSL3-induced ferroptosis. Moreover, we tested the possible regulatory transcription factor NF-E2-related factor 2 (NRF2) of SLC7A11 by Western blot. Knock-down of NRF2 decreased the expression of SLC7A11. Our study suggests that SLC7A11 plays a key role in the laser-induced CNV model by protecting RPE cells from ferroptosis. SLC7A11 provides a new therapeutic target for neovascular AMD patients.


Sign in / Sign up

Export Citation Format

Share Document