scholarly journals Long-Term Treatment with Atypical Antipsychotic Iloperidone Modulates Cytochrome P450 2D (CYP2D) Expression and Activity in the Liver and Brain via Different Mechanisms

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3472
Author(s):  
Przemysław J. Danek ◽  
Władysława A. Daniel

CYP2D enzymes engage in the synthesis of endogenous neuroactive substances (dopamine, serotonin) and in the metabolism of neurosteroids. The present work investigates the effect of iloperidone on CYP2D enzyme expression and activity in rat brains and livers. Iloperidone exerted a weak direct inhibitory effect on CYP2D activity in vitro in the liver and brain microsomes (Ki = 11.5 μM and Ki = 462 μM, respectively). However, a two-week treatment with iloperidone (1 mg/kg ip.) produced a significant decrease in the activity of liver CYP2D, which correlated positively with the reduced CYP2D1, CYP2D2 and CYP2D4 protein and mRNA levels. Like in the liver, iloperidone reduced CYP2D activity and protein levels in the frontal cortex and cerebellum but enhanced these levels in the nucleus accumbens, striatum and substantia nigra. Chronic iloperidone did not change the brain CYP2D4 mRNA levels, except in the striatum, where they were significantly increased. In conclusion, by affecting CYP2D activity in the brain, iloperidone may modify its pharmacological effect, via influencing the rate of dopamine and serotonin synthesis or the metabolism of neurosteroids. By elevating the CYP2D expression/activity in the substantia nigra and striatum (i.e., in the dopaminergic nigrostriatal pathway), iloperidone may attenuate extrapyramidal symptoms, while by decreasing the CYP2D activity and metabolism of neurosteroiods in the frontal cortex and cerebellum, iloperidone can have beneficial effects in the treatment of schizophrenia. In the liver, pharmacokinetic interactions involving chronic iloperidone and CYP2D substrates are likely to occur.

1975 ◽  
Vol 80 (1) ◽  
pp. 188-198 ◽  
Author(s):  
Per Aage Høisaeter

ABSTRACT The ventral prostate of the rat both after in vitro incubation and in vivo experiments was found to contain appreciable 5α-reductase activity, whilst a very low activity was registered in the diaphragm and liver. Neither Estracyt® nor LEO275 (Estracyt® without the phosphate group in position 17 of the oestradiol moiety) had an inhibitory effect on the enzyme activity after in vitro incubation but equivalent amounts of oestradiol-17β and oestradiol-17β-phosphate significantly reduced 5α-reductase activity. When Estracyt® was injected in vivo no influence on activity was registered in "short term" experiments while a significant inhibition was found after "long term" treatment in vivo. Possible explanations for this "long term" effect of Estracyt® on 5α-reductase activity are discussed.


2021 ◽  
Vol 22 (12) ◽  
pp. 6570
Author(s):  
Yue Lv ◽  
Rui-Can Cao ◽  
Hong-Bin Liu ◽  
Xian-Wei Su ◽  
Gang Lu ◽  
...  

A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2607
Author(s):  
Yuzhen Gao ◽  
Jingjing Cao ◽  
Pan Xing ◽  
Ralf Altmeyer ◽  
Youming Zhang

Respiratory syncytial virus (RSV) is a major pathogen that causes severe lower respiratory tract infection in infants, the elderly and the immunocompromised worldwide. At present no approved specific drugs or vaccines are available to treat this pathogen. Recently, several promising candidates targeting RSV entry and multiplication steps are under investigation. However, it is possible to lead to drug resistance under the long-term treatment. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we tested in vitro two-drug combinations of fusion inhibitors (GS5806, Ziresovir and BMS433771) and RNA-dependent RNA polymerase complex (RdRp) inhibitors (ALS8176, RSV604, and Cyclopamine). The statistical program MacSynergy II was employed to determine synergism, additivity or antagonism between drugs. From the result, we found that combinations of ALS8176 and Ziresovir or GS5806 exhibit additive effects against RSV in vitro, with interaction volume of 50 µM2% and 31 µM2% at 95% confidence interval, respectively. On the other hand, all combinations between fusion inhibitors showed antagonistic effects against RSV in vitro, with volume of antagonism ranging from −50 µM2 % to −176 µM2 % at 95% confidence interval. Over all, our results suggest the potentially therapeutic combinations in combating RSV in vitro could be considered for further animal and clinical evaluations.


2021 ◽  
Vol 12 ◽  
pp. 204173142110277
Author(s):  
Edward X Han ◽  
Juan Wang ◽  
Mehmet Kural ◽  
Bo Jiang ◽  
Katherine L Leiby ◽  
...  

Transplantation of pancreatic islets has been shown to be effective, in some patients, for the long-term treatment of type 1 diabetes. However, transplantation of islets into either the portal vein or the subcutaneous space can be limited by insufficient oxygen transfer, leading to islet loss. Furthermore, oxygen diffusion limitations can be magnified when islet numbers are increased dramatically, as in translating from rodent studies to human-scale treatments. To address these limitations, an islet transplantation approach using an acellular vascular graft as a vascular scaffold has been developed, termed the BioVascular Pancreas (BVP). To create the BVP, islets are seeded as an outer coating on the surface of an acellular vascular graft, using fibrin as a hydrogel carrier. The BVP can then be anastomosed as an arterial (or arteriovenous) graft, which allows fully oxygenated arterial blood with a pO2 of roughly 100 mmHg to flow through the graft lumen and thereby supply oxygen to the islets. In silico simulations and in vitro bioreactor experiments show that the BVP design provides adequate survivability for islets and helps avoid islet hypoxia. When implanted as end-to-end abdominal aorta grafts in nude rats, BVPs were able to restore near-normoglycemia durably for 90 days and developed robust microvascular infiltration from the host. Furthermore, pilot implantations in pigs were performed, which demonstrated the scalability of the technology. Given the potential benefits provided by the BVP, this tissue design may eventually serve as a solution for transplantation of pancreatic islets to treat or cure type 1 diabetes.


1982 ◽  
Vol 10 (3) ◽  
pp. 179-182
Author(s):  
B Bresky ◽  
K Lincoln

Thirty out-patients with chronic recurrent urinary tract infections, who had failed to respond to 10 days treatment with either pivmecillinam and/or amoxycillin, received a 3-month course of pivmecillinam at a dose of 200 mg, three times daily. Twenty-seven patients had bacteriuria due to Enterobacteriaceae, mainly Escherichia coli, sensitive to mecillinam in vitro. Pivmecillinam eradicated all the initial urinary pathogens. Reinfections occurred during treatment in three patients, who remained asymptomatic. Four subjects complained of gastro-intestinal side-effects, and therapy was withdrawn in three instances. Another three patients described unusual adverse events towards the end of the course of treatment, described as an odd sensation in the body and a desire for salt. The sensation disappeared a few days after the end of treatment. Treatment with pivmecillinam had no adverse effect on haematopoietic, hepatic or renal function.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Martina Reutzel ◽  
Rekha Grewal ◽  
Carmina Silaidos ◽  
Jens Zotzel ◽  
Stefan Marx ◽  
...  

Aging represents a major risk factor for developing neurodegenerative diseases such as Alzheimer’s disease (AD). As components of the Mediterranean diet, olive polyphenols may play a crucial role in the prevention of AD. Since mitochondrial dysfunction acts as a final pathway in both brain aging and AD, respectively, the effects of a mixture of highly purified olive secoiridoids were tested on cognition and ATP levels in a commonly used mouse model for brain aging. Over 6 months, female NMRI mice (12 months of age) were fed with a blend containing highly purified olive secoiridoids (POS) including oleuropein, hydroxytyrosol and oleurosid standardized for 50 mg oleuropein/kg diet (equivalent to 13.75 mg POS/kg b.w.) or the study diet without POS as control. Mice aged 3 months served as young controls. Behavioral tests showed deficits in cognition in aged mice. Levels of ATP and mRNA levels of NADH-reductase, cytochrome-c-oxidase, and citrate synthase were significantly reduced in the brains of aged mice indicating mitochondrial dysfunction. Moreover, gene expression of Sirt1, CREB, Gap43, and GPx-1 was significantly reduced in the brain tissue of aged mice. POS-fed mice showed improved spatial working memory. Furthermore, POS restored brain ATP levels in aged mice which were significantly increased. Our results show that a diet rich in purified olive polyphenols has positive long-term effects on cognition and energy metabolism in the brain of aged mice.


2006 ◽  
Vol 291 (5) ◽  
pp. E885-E890 ◽  
Author(s):  
Dominik G. Haider ◽  
Friedrich Mittermayer ◽  
Georg Schaller ◽  
Michaela Artwohl ◽  
Sabina M. Baumgartner-Parzer ◽  
...  

The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo ( n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 ± 0.1 to 1.7 ± 0.2 ng/ml ( P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.


2011 ◽  
Vol 286 (22) ◽  
pp. 19724-19734 ◽  
Author(s):  
Hovik Farghaian ◽  
Yu Chen ◽  
Ada W. Y. Fu ◽  
Amy K. Y. Fu ◽  
Jacque P. K. Ip ◽  
...  

Scapinin is an actin- and PP1-binding protein that is exclusively expressed in the brain; however, its function in neurons has not been investigated. Here we show that expression of scapinin in primary rat cortical neurons inhibits axon elongation without affecting axon branching, dendritic outgrowth, or polarity. This inhibitory effect was dependent on its ability to bind actin because a mutant form that does not bind actin had no effect on axon elongation. Immunofluorescence analysis showed that scapinin is predominantly located in the distal axon shaft, cell body, and nucleus of neurons and displays a reciprocal staining pattern to phalloidin, consistent with previous reports that it binds actin monomers to inhibit polymerization. We show that scapinin is phosphorylated at a highly conserved site in the central region of the protein (Ser-277) by Cdk5 in vitro. Expression of a scapinin phospho-mimetic mutant (S277D) restored normal axon elongation without affecting actin binding. Instead, phosphorylated scapinin was sequestered in the cytoplasm of neurons and away from the axon. Because its expression is highest in relatively plastic regions of the adult brain (cortex, hippocampus), scapinin is a new regulator of neurite outgrowth and neuroplasticity in the brain.


2018 ◽  
Vol 109 (2) ◽  
pp. 236-247 ◽  
Author(s):  
H.-H. Zhang ◽  
M.-J. Luo ◽  
Q.-W. Zhang ◽  
P.-M. Cai ◽  
A. Idrees ◽  
...  

AbstractPhenoloxidase (PO) plays a key role in melanin biosynthesis during insect development. Here, we isolated the 2310-bp full-length cDNA of PPO1 fromZeugodacus tau, a destructive horticultural pest. qRT-polymerase chain reaction showed that theZtPPO1transcripts were highly expressed during larval–prepupal transition and in the haemolymph. When the larvae were fed a 1.66% kojic acid (KA)-containing diet, the levels of theZtPPO1transcripts significantly increased by 2.79- and 3.39-fold in the whole larvae and cuticles, respectively, while the corresponding PO activity was significantly reduced; in addition, the larval and pupal durations were significantly prolonged; pupal weights were lowered; and abnormal phenotypes were observed. Anin vitroinhibition experiment indicated that KA was an effective competitive inhibitor of PO inZ. tau. Additionally, the functional analysis showed that 20E could significantly up-regulate the expression ofZtPPO1, induce lower pupal weight, and advance pupation. Knockdown of theZtPPO1gene by RNAi significantly decreased mRNA levels after 24 h and led to low pupation rates and incomplete pupae with abnormal phenotypes during the larval-pupal interim period. These results proved that PO is important for the normal growth ofZ. tauand that KA can disrupt the development of this pest insect.


Sign in / Sign up

Export Citation Format

Share Document