scholarly journals Assessment of Collagen-Based Nanostructured Biomimetic Systems with a Co-Culture of Human Bone-Derived Cells

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Giorgia Borciani ◽  
Giorgia Montalbano ◽  
Priscila Melo ◽  
Nicola Baldini ◽  
Gabriela Ciapetti ◽  
...  

Osteoporosis is a worldwide disease resulting in the increase of bone fragility and enhanced fracture risk in adults. In the context of osteoporotic fractures, bone tissue engineering (BTE), i.e., the use of bone substitutes combining biomaterials, cells, and other factors, is considered a potential alternative to conventional treatments. Innovative scaffolds need to be tested in in vitro systems where the simultaneous presence of osteoblasts (OBs) and osteoclasts (OCs), the two main players of bone remodeling, is required to mimic their crosstalk and molecular cooperation. To this aim, two composite materials were developed, based on type I collagen, and containing either strontium-enriched mesoporous bioactive glasses or rod-like hydroxyapatite nanoparticles. The developed nanostructured systems underwent genipin chemical crosslinking and were then tested with an indirect co-culture of human trabecular bone-derived OBs and buffy coat-derived OC precursors, for 2–3 weeks. The favorable structural and biological properties of the materials proved to successfully support the viability, adhesion, and differentiation of cells, encouraging a further investigation of the developed bioactive systems as biomaterial inks for the 3D printing of more complex scaffolds for BTE.

2021 ◽  
Vol 10 (14) ◽  
pp. 3141
Author(s):  
Hyerin Jung ◽  
Yeri Alice Rim ◽  
Narae Park ◽  
Yoojun Nam ◽  
Ji Hyeon Ju

Osteogenesis imperfecta (OI) is a genetic disease characterized by bone fragility and repeated fractures. The bone fragility associated with OI is caused by a defect in collagen formation due to mutation of COL1A1 or COL1A2. Current strategies for treating OI are not curative. In this study, we generated induced pluripotent stem cells (iPSCs) from OI patient-derived blood cells harboring a mutation in the COL1A1 gene. Osteoblast (OB) differentiated from OI-iPSCs showed abnormally decreased levels of type I collagen and osteogenic differentiation ability. Gene correction of the COL1A1 gene using CRISPR/Cas9 recovered the decreased type I collagen expression in OBs differentiated from OI-iPSCs. The osteogenic potential of OI-iPSCs was also recovered by the gene correction. This study suggests a new possibility of treatment and in vitro disease modeling using patient-derived iPSCs and gene editing with CRISPR/Cas9.


Author(s):  
Jose Russo ◽  
Kara Snider ◽  
Julia S. Pereira ◽  
Irma H. Russo

AbstractStem cells have the unique potential to divide asymmetrically to generate daughters with distinct fates, one which remains a stem cell and the other which turns into a cell committed to differentiation. By dividing asymmetrically, stem cells maintain the stem cell pool and simultaneously generate committed cells that reconstitute the organ, for example, to prepare the breast for a new pregnancy after involution from a previous pregnancy and lactation process. In addition to the in vivo models of mammary morphogenesis, there are in vitro systems that make the ductulogenic pattern of breast epithelia growth more amenable to study in critically determined conditions. The human breast epithelial cells MCF-10F formed tubules when grown in type I collagen and we demonstrated that treatment of these cells with 17β-estradiol (E


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2081
Author(s):  
Jian-Chih Chen ◽  
Chih-Hua Chen ◽  
Kai-Chi Chang ◽  
Shih-Ming Liu ◽  
Chia-Ling Ko ◽  
...  

Biomolecule grafting on polyether ether ketone (PEEK) was used to improve cell affinity caused by surface inertness. This study demonstrated the sequence-polished (P) and sulfonated (SA) PEEK modification to make a 3D structure, active biomolecule graftings through PEEK silylation (SA/SI) and then processed with phosphatidylcholine (with silylation of SA/SI/PC; without SA/PC) and type I collagen (COL I, with silylation of SA/SI/C; without SA/C). Different modified PEEKs were implanted for 4, 8, and 12 weeks for histology. Sulfonated PEEK of SA showed the surface roughness was significantly increased; after the silylation of SA/SI, the hydrophilic nature was remarkably improved. The biomolecules were effectively grafted through silylation, and the cells showed improved attachment after 1 h. Furthermore, the SA/SI/PC group showed good in vitro mineralization. The new bone tissues were integrated into the 3D porous structures of SA/SI/PC and SA/SI/C in vivo making PEEK a potential alternative to metals in orthopedic implants.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7648
Author(s):  
Nunzia Gallo ◽  
Maria Lucia Natali ◽  
Claudia Curci ◽  
Angela Picerno ◽  
Anna Gallone ◽  
...  

Urethral stenosis is a pathological condition that consists in the narrowing of the urethral lumen because of the formation of scar tissue. Unfortunately, none of the current surgical approaches represent an optimal solution because of the high stricture recurrence rate. In this context, we preliminarily explored the potential of an insoluble type-I collagen from horse tendon as scaffolding material for the development of innovative devices for the regeneration of injured urethral tracts. Non-porous collagen-based substrates were produced and optimized, in terms of crosslinking density of the macromolecular structure, to either provide mechanical properties compliant with the urinary tract physiological stress and better sustain tissue regeneration. The effect of the adopted crosslinking strategy on the protein integrity and on the substrate physical–chemical, mechanical and biological properties was investigated in comparison with a decellularized matrix from porcine small intestinal submucosa (SIS patch), an extensively used xenograft licensed for clinical use in urology. The optimized production protocols allowed the preservation of the type I collagen native structure and the realization of a substrate with appealing end-use properties. The biological response, preliminarily investigated by immunofluorescence experiments on human adult renal stem/progenitor cells until 28 days, showed the formation of a stem-cell monolayer within 14 days and the onset of spheroids within 28 days. These results suggested the great potential of the collagen-based material for the development of scaffolds for urethral plate regeneration and for in vitro cellular studies.


RSC Advances ◽  
2017 ◽  
Vol 7 (42) ◽  
pp. 25828-25837 ◽  
Author(s):  
Haiyong Ao ◽  
Chucheng Lin ◽  
Binen Nie ◽  
Shengbing Yang ◽  
Youtao Xie ◽  
...  

The synergistic effect on osseointegration is existed between Type I collagen (ColI) and hyaluronic acid (HA), and the early osseogenetic activity of ColI/HA multilayer modified titanium coatings (TC) is higher than that ColI modified TC and HA modified TC.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jia Tang ◽  
Takashi Saito

Type I collagen (COL-1) is the prevailing component of the extracellular matrix in a number of tissues including skin, ligament, cartilage, bone, and dentin. It is the most widely used tissue-derived natural polymer. Currently, mammalian animals, including pig, cow, and rat, are the three major sources for purification of COL-1. To reduce the risk of zoonotic infectious diseases transmission, minimize the possibility of immunogenic reaction, and avoid problems related to religious issues, exploration of new sources (other than mammalian animals) for the purification of type I collagen is highly desirable. Hence, the purpose of the current study was to investigate the in vitro responses of MDPC-23 to type I collagen isolated from tilapia scale in terms of cellular proliferation, differentiation, and mineralization. The results suggested that tilapia scale collagen exhibited comparable biocompatibility to porcine skin collagen, indicating it might be a potential alternative to type I collagen from mammals in the application for tissue regeneration in oral-maxillofacial area.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


Author(s):  
Outi Mäkitie ◽  
M. Carola Zillikens

AbstractOsteoporosis is a skeletal disorder with enhanced bone fragility, usually affecting the elderly. It is very rare in children and young adults and the definition is not only based on a low BMD (a Z-score < − 2.0 in growing children and a Z-score ≤ − 2.0 or a T-score ≤ − 2.5 in young adults) but also on the occurrence of fragility fractures and/or the existence of underlying chronic diseases or secondary factors such as use of glucocorticoids. In the absence of a known chronic disease, fragility fractures and low BMD should prompt extensive screening for secondary causes, which can be found in up to 90% of cases. When fragility fractures occur in childhood or young adulthood without an evident secondary cause, investigations should explore the possibility of an underlying monogenetic bone disease, where bone fragility is caused by a single variant in a gene that has a major role in the skeleton. Several monogenic forms relate to type I collagen, but other forms also exist. Loss-of-function variants in LRP5 and WNT1 may lead to early-onset osteoporosis. The X-chromosomal osteoporosis caused by PLS3 gene mutations affects especially males. Another recently discovered form relates to disturbed sphingolipid metabolism due to SGMS2 mutations, underscoring the complexity of molecular pathology in monogenic early-onset osteoporosis. Management of young patients consists of treatment of secondary factors, optimizing lifestyle factors including calcium and vitamin D and physical exercise. Treatment with bone-active medication should be discussed on a personalized basis, considering the severity of osteoporosis and underlying disease versus the absence of evidence on anti-fracture efficacy and potential harmful effects in pregnancy.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Sign in / Sign up

Export Citation Format

Share Document