scholarly journals Retrotransposons Down- and Up-Regulation in Aging Somatic Tissues

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Giorgia Giordani ◽  
Valeria Cavaliere ◽  
Giuseppe Gargiulo ◽  
Giovanna Lattanzi ◽  
Davide Andrenacci

The transposon theory of aging hypothesizes the activation of transposable elements (TEs) in somatic tissues with age, leading to a shortening of the lifespan. It is thought that TE activation in aging produces an increase in DNA double-strand breaks, contributing to genome instability and promoting the activation of inflammatory responses. To investigate how TE regulation changes in somatic tissues during aging, we analyzed the expression of some TEs, as well as a source of small RNAs that specifically silence the analyzed TEs; the Drosophila cluster named flamenco. We found significant variations in the expression levels of all the analyzed TEs during aging, with a trend toward reduction in middle-aged adults and reactivation in older individuals that suggests dynamic regulation during the lifespan.

2021 ◽  
Vol 11 ◽  
Author(s):  
Matthew J. Rybin ◽  
Melina Ramic ◽  
Natalie R. Ricciardi ◽  
Philipp Kapranov ◽  
Claes Wahlestedt ◽  
...  

Genome instability is associated with myriad human diseases and is a well-known feature of both cancer and neurodegenerative disease. Until recently, the ability to assess DNA damage—the principal driver of genome instability—was limited to relatively imprecise methods or restricted to studying predefined genomic regions. Recently, new techniques for detecting DNA double strand breaks (DSBs) and single strand breaks (SSBs) with next-generation sequencing on a genome-wide scale with single nucleotide resolution have emerged. With these new tools, efforts are underway to define the “breakome” in normal aging and disease. Here, we compare the relative strengths and weaknesses of these technologies and their potential application to studying neurodegenerative diseases.


Author(s):  
Eva Janisiw ◽  
Marilina Raices ◽  
Fabiola Balmir ◽  
Luis Paulin Paz ◽  
Antoine Baudrimont ◽  
...  

SummaryPoly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in promoting the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism.


2017 ◽  
Author(s):  
Clémence Claussin ◽  
David Porubský ◽  
Diana C.J. Spierings ◽  
Nancy Halsema ◽  
Stefan Rentas ◽  
...  

SummaryHomologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. Contrary to what is commonly thought, we find that most spontaneous SCE events are not due to the repair of DNA double-strand breaks.


2019 ◽  
Vol 47 (6) ◽  
pp. 1609-1619 ◽  
Author(s):  
Qian Wu

Non-homologous end joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), which is the most toxic DNA damage in cells. Unrepaired DSBs can cause genome instability, tumorigenesis or cell death. DNA end synapsis is the first and probably the most important step of the NHEJ pathway, aiming to bring two broken DNA ends close together and provide structural stability for end processing and ligation. This process is mediated through a group of NHEJ proteins forming higher-order complexes, to recognise and bridge two DNA ends. Spatial and temporal understanding of the structural mechanism of DNA-end synapsis has been largely advanced through recent structural and single-molecule studies of NHEJ proteins. This review focuses on core NHEJ proteins that mediate DNA end synapsis through their unique structures and interaction properties, as well as how they play roles as anchor and linker proteins during the process of ‘bridge over troubled ends'.


2014 ◽  
Vol 25 (16) ◽  
pp. 2461-2471 ◽  
Author(s):  
Rebecca K. Swartz ◽  
Elisa C. Rodriguez ◽  
Megan C. King

Unless efficiently and faithfully repaired, DNA double-strand breaks (DSBs) cause genome instability. We implicate a Schizosaccharomyces pombe nuclear envelope–spanning linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of the Sad1/Unc84 protein Sad1 and Klarsicht/Anc1/SYNE1 homology protein Kms1, in the repair of DSBs. An induced DSB associates with Sad1 and Kms1 in S/G2 phases of the cell cycle, connecting the DSB to cytoplasmic microtubules. DSB resection to generate single-stranded DNA and the ATR kinase drive the formation of Sad1 foci in response to DNA damage. Depolymerization of microtubules or loss of Kms1 leads to an increase in the number and size of DSB-induced Sad1 foci. Further, Kms1 and the cytoplasmic microtubule regulator Mto1 promote the repair of an induced DSB by gene conversion, a type of homology-directed repair. kms1 genetically interacts with a number of genes involved in homology-directed repair; these same gene products appear to attenuate the formation or promote resolution of DSB-induced Sad1 foci. We suggest that the connection of DSBs with the cytoskeleton through the LINC complex may serve as an input to repair mechanism choice and efficiency.


2017 ◽  
Vol 372 (1731) ◽  
pp. 20160285 ◽  
Author(s):  
Magdalena B. Rother ◽  
Haico van Attikum

Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


2020 ◽  
Author(s):  
Sarah E. Allen ◽  
Gabriel T. Koreman ◽  
Ankita Sarkar ◽  
Bei Wang ◽  
Mariana F. Wolfner ◽  
...  

AbstractMosaic animals have provided the platform for many fundamental discoveries in developmental biology, cell biology, and other fields. Techniques to produce mosaic animals by mitotic recombination have been extensively developed in Drosophila melanogaster but are less common for other laboratory organisms. Here, we report mosaic analysis by gRNA-induced crossing-over (MAGIC), a new technique for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9. MAGIC efficiently produces mosaic clones in both somatic tissues and the germline of Drosophila. Further, by developing a MAGIC toolkit for one chromosome arm, we demonstrate the method’s application in characterizing gene function in neural development and in generating fluorescently marked clones in wild-derived Drosophila strains. Eliminating the need to introduce recombinase-recognition sites in the genome, this simple and versatile system simplifies mosaic analysis in Drosophila and can be applied in any organism that is compatible with CRISPR/Cas9.


2021 ◽  
Author(s):  
Ekaterina Akimova ◽  
Franz Josef Gassner ◽  
Maria Schubert ◽  
Stefan Rebhandl ◽  
Claudia Arzt ◽  
...  

Abstract Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.


2019 ◽  
Author(s):  
Guillaume Gaullier ◽  
Genevieve Roberts ◽  
Uma M. Muthurajan ◽  
Samuel Bowerman ◽  
Johannes Rudolph ◽  
...  

AbstractPoly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.


2020 ◽  
Author(s):  
Mayuko Goto ◽  
Mariko Sasaki ◽  
Takehiko Kobayashi

ABSTRACTRegulation of replication origins is important for complete duplication of the genome, but the effect of origin activation on the cellular response to replication stress is poorly understood. The budding yeast ribosomal RNA gene (rDNA) forms tandem repeats and undergoes replication fork arrest at the replication fork barrier (RFB), inducing DNA double-strand breaks (DSBs) and genome instability accompanied by copy number alterations. Here we demonstrate that the S-phase cyclin Clb5 promotes rDNA stability. Absence of Clb5 led to reduced efficiency of replication initiation in rDNA but had little effect on the amount of replication forks arrested at the RFB, suggesting that arrival of the converging fork is delayed and forks are more stably arrested at the RFB. Deletion of CLB5 affected neither DSB formation nor its repair at the RFB, but led to an accumulation of recombination intermediates. Therefore, arrested forks at the RFB may be subject to DSB-independent, recombination-dependent rDNA instability. The rDNA instability in clb5Δ was not completely suppressed by the absence of Fob1, which is responsible for fork arrest at the RFB. Thus, Clb5 establishes the proper interval for active replication origins and shortens the travel distance for DNA polymerases, which may reduce Fob1-independent DNA damage.


Sign in / Sign up

Export Citation Format

Share Document