scholarly journals Generation of Human Stomach Cancer iPSC-Derived Organoids Induced by Helicobacter pylori Infection and Their Application to Gastric Cancer Research

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 184
Author(s):  
Chia-Chen Ku ◽  
Kenly Wuputra ◽  
Jia-Bin Pan ◽  
Chia-Pei Li ◽  
Chung-Jung Liu ◽  
...  

There is considerable cellular diversity in the human stomach, which has helped to clarify cell plasticity in normal development and tumorigenesis. Thus, the stomach is an interesting model for understanding cellular plasticity and for developing prospective anticancer therapeutic agents. However, many questions remain regarding the development of cancers in vivo and in vitro in two- or three-dimensional (2D/3D) cultures, as well as the role of Helicobacter pylori (H. p.) infection. Here, we focus on the characteristics of cancer stem cells and their derived 3D organoids in culture, including the formation of stem cell niches. We define the conditions required for such organoid culture in vitro and examine the ability of such models for testing the use of anticancer agents. We also summarize the signaling cascades and the specific markers of stomach-cancer-derived organoids induced by H. p. infection, and their stem cell niches.

MRS Bulletin ◽  
2010 ◽  
Vol 35 (8) ◽  
pp. 591-596 ◽  
Author(s):  
Ana I. Teixeira ◽  
Ola Hermanson ◽  
Carsten Werner

AbstractStem cells have received a lot of attention due to great promises in medical treatment, for example, by replacing lost and sick cells and re-constituting cell populations. There are several classes of stem cells, including embryonic, fetal, and adult tissue specific. More recently, the generation of so-called induced pluripotent stem (iPS) cells from differentiated cells has been established. Common criteria for all types of stem cells include their ability to self-renew and to retain their ability to differentiate in response to specific cues. These characteristics, as well as the instructive steering of the cells into differentiation, are largely dependent on the microenvironment surrounding the cells. Such “stem cell friendly” microenvironments, provided by structural and biochemical components, are often referred to as niches. Biomaterials offer attractive solutions to engineer functional stem cell niches and to steer stem cell state and fatein vitroas well asin vivo. Among materials used so far, promising results have been achieved with low-toxicity and biodegradable polymers, such as polyglycolic acid and related materials, as well as other polymers used as structural “scaffolds” for engineering of extracellular matrix components. To improve the efficiency of stem cell control and the design of the biomaterials, interfaces among stem cell research, developmental biology, regenerative medicine, chemical engineering, and materials research are rapidly developing. Here we provide an introduction to stem cell biology and principles of niche engineering and give an overview of recent advancements in stem cell niche engineering from two stem cell systems—blood and brain.


1983 ◽  
Vol 1 (2) ◽  
pp. 117-127 ◽  
Author(s):  
S. C. Barranco ◽  
C. M. Townsend ◽  
M. A. Quraishi ◽  
N. L. Burger ◽  
H. C. Nevill ◽  
...  

2020 ◽  
Author(s):  
Yunki Lee ◽  
Jeongmoon J. Choi ◽  
Song Ih Ahn ◽  
Nan Hee Leea ◽  
Woojin M. Han ◽  
...  

AbstractExposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Silvana Bardelli ◽  
Marco Moccetti

The interactions between stem cells and their surrounding microenvironment are pivotal to determine tissue homeostasis and stem cell renewal or differentiation and regenerationin vivo. Ever since they were postulated in 1978, stem cell niches have been identified and characterized in many germline and adult tissues. Comprehensive studies over the last decades helped to clarify the critical components of stem cell niches that include cellular, extracellular, biochemical, molecular, and physical regulators. This knowledge has direct impact on their inherent regenerative potential. Clinical applications demand readily available cell sources that, under controlled conditions, provide a specific therapeutic function. Thus, translational medicine aims at optimizingin vitroorin vivothe various components and complex architecture of the niche to exploit its therapeutic potential. Accordingly, the objective is to recreate the natural niche microenvironment during cell therapy process development and closely comply with the requests of regulatory authorities. In this paper, we review the most recent advances of translational medicine approaches that target the adult stem cell natural niche microenvironment for regenerative medicine applications.


2007 ◽  
Vol 39 (4) ◽  
pp. 208-215 ◽  
Author(s):  
K.H. Lee ◽  
E.Y. Choi ◽  
M.S. Hyun ◽  
B.I. Jang ◽  
T.N. Kim ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sri Renukadevi Balusamy ◽  
Sivasubramanian Ramani ◽  
Sathishkumar Natarajan ◽  
Yeon Ju Kim ◽  
Haribalan Perumalsamy

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Urszula Gawlik-Dziki ◽  
Michał Świeca ◽  
Dariusz Dziki ◽  
Łukasz Sęczyk ◽  
Urszula Złotek ◽  
...  

This study is focused on antioxidant and anticancer capacity of bread enriched with broccoli sprouts (BS) in the light of their potential bioaccessibility and bioavailability. Generally, bread supplementation elevated antioxidant potential of product (both nonenzymatic and enzymatic antioxidant capacities); however, the increase was not correlated with the percent of BS. A replacement up to 2% of BS gives satisfactory overall consumers acceptability and desirable elevation of antioxidant potential. High activity was especially found for extracts obtained after simulated digestion, which allows assuming their protective effect for upper gastrointestinal tract; thus, the anticancer activity against human stomach cancer cells (AGS) was evaluated. A prominent cytostatic response paralleled by the inhibition of AGS motility in the presence of potentially mastication-extractable phytochemicals indicates that phenolic compounds of BS retain their biological activity in bread. Importantly, the efficient phenolics concentration was about 12 μM for buffer extract, 13 μM for extracts after digestionin vitro, and 7 μM for extract after absorptionin vitro. Our data confirm chemopreventive potential of bread enriched with BS and indicate that BS comprise valuable food supplement for stomach cancer chemoprevention.


2021 ◽  
Vol 11 (7) ◽  
pp. 3000
Author(s):  
Bruna Lopes ◽  
Patrícia Sousa ◽  
Rui Alvites ◽  
Mariana Branquinho ◽  
Ana Sousa ◽  
...  

In the past decades, regenerative medicine applied on skin lesions has been a field of constant improvement for both human and veterinary medicine. The process of healing cutaneous wound injuries implicates a well-organized cascade of molecular and biological processes. However, sometimes the normal process fails and can result in a chronic lesion. In addition, wounds are considered an increasing clinical impairment, due to the progressive ageing of the population, as well as the prevalence of concomitant diseases, such as diabetes and obesity, that represent risk-aggravating factors for the development of chronic skin lesions. Stem cells’ regenerative potential has been recognized worldwide, including towards skin lesion repair, Tissue engineering techniques have long been successfully associated with stem cell therapies, namely the application of three-dimensional (3D) bioprinted scaffolds. With this review, we intend to explore several stem cell sources with promising aptitude towards skin regeneration, as well as different techniques used to deliver those cells and provide a supporting extracellular matrix environment, with effective outcomes. Furthermore, different studies are discussed, both in vitro and in vivo, in terms of their relevance in the skin regeneration field.


Author(s):  
Ya An Tsai ◽  
Tianshu Li ◽  
Lucia A. Torres-Fernández ◽  
Stefan C. Weise ◽  
Waldemar Kolanus ◽  
...  

Three-dimensional (3D) culture bridges and minimizes the gap between in vitro and in vivo states of cells and various 3D culture systems have been developed according to different approaches. However, most of these approaches are either complicated to operate, or costive to scale up. Therefore, a simple method for stem cell spheroid formation and preservation was proposed using poly(D,L-lactic acid) porous thin film (porous nanosheet), which were fabricated by a roll-to-roll gravure coating method combining a solvent etching process. The obtained porous nanosheet was less than 200 nm in thickness and had an average pore area of 6.6 μm2 with a porosity of 0.887. It offered a semi-adhesive surface for stem cells to form spheroids and maintained the average spheroid diameter below 100 μm for 5 days. In comparison to the spheroids formed in suspension culture, the porous nanosheets improved cell viability and cell division rate, suggesting the better feasibility to be applied as 3D culture scaffolds.


Author(s):  
Nabanita Mukherjee ◽  
Karoline A. Lambert ◽  
David A. Norris ◽  
Yiqun G. Shellman

AbstractSphere assays are widely used in vitro techniques to enrich and evaluate the stem-like cell behavior of both normal and cancer cells. Utilizing three-dimensional in vitro sphere culture conditions provide a better representation of tumor growth in vivo than the more common monolayer cultures. We describe how to perform primary and secondary sphere assays, used for the enrichment and self-renewability studies of melanoma/melanocyte stem-like cells. Spheres are generated by growing melanoma cells at low density in nonadherent conditions with stem cell media. We provide protocols for preparing inexpensive and versatile polyHEMA-coated plates, setting up primary and secondary sphere assays in almost any tissue culture format and quantification methods using standard inverted microscopy. Our protocol is easily adaptable to laboratories with basic cell culture capabilities, without the need for expensive fluidic instruments.


Sign in / Sign up

Export Citation Format

Share Document