scholarly journals Microbiome, Parkinson’s Disease and Molecular Mimicry

Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 222 ◽  
Author(s):  
Fabiana Miraglia ◽  
Emanuela Colla

Parkinson’s Disease (PD) is typically classified as a neurodegenerative disease affecting the motor system. Recent evidence, however, has uncovered the presence of Lewy bodies in locations outside the CNS, in direct contact with the external environment, including the olfactory bulbs and the enteric nervous system. This, combined with the ability of alpha-synuclein (αS) to propagate in a prion-like manner, has supported the hypothesis that the resident microbial community, commonly referred to as microbiota, might play a causative role in the development of PD. In this article, we will be reviewing current knowledge on the importance of the microbiota in PD pathology, concentrating our investigation on mechanisms of microbiota-host interactions that might become harmful and favor the onset of PD. Such processes, which include the secretion of bacterial amyloid proteins or other metabolites, may influence the aggregation propensity of αS directly or indirectly, for example by favoring a pro-inflammatory environment in the gut. Thus, while the development of PD has not yet being associated with a unique microbial species, more data will be necessary to examine potential harmful interactions between the microbiota and the host, and to understand their relevance in PD pathogenesis.

2022 ◽  
Vol 13 ◽  
Author(s):  
Emily M. Klann ◽  
Upuli Dissanayake ◽  
Anjela Gurrala ◽  
Matthew Farrer ◽  
Aparna Wagle Shukla ◽  
...  

Parkinson’s disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome–gut–brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome–gut–brain axis might play in the underlying pathological mechanisms of Parkinson’s disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson’s disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome–gut–brain axis in the context of Parkinson’s disease.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Lingjia Xu ◽  
Jiali Pu

Parkinson’s disease is a neurodegenerative disease/synucleinopathy that develops slowly; however, there is no efficient method of early diagnosis, nor is there a cure. Progressive dopaminergic neuronal cell loss in the substantia nigra pars compacta and widespread aggregation of theα-synuclein protein (encoded by theSNCAgene) in the form of Lewy bodies and Lewy neurites are the neuropathological hallmarks of Parkinson’s disease. TheSNCAgene has undergone gene duplications, triplications, and point mutations. However, the specific mechanism ofα-synuclein in Parkinson’s disease remains obscure. Recent research showed that variousα-synuclein oligomers, pathological aggregation, and propagation appear to be harmful in certain areas in Parkinson’s disease patients. This review summarizes our current knowledge of the pathogenetic dysfunction ofα-synuclein associated with Parkinson’s disease and highlights current approaches that seek to develop this protein as a possible diagnostic biomarker and therapeutic target.


2020 ◽  
Vol 11 (12) ◽  
pp. 3332-3344 ◽  
Author(s):  
Laura Mariño ◽  
Rafael Ramis ◽  
Rodrigo Casasnovas ◽  
Joaquín Ortega-Castro ◽  
Bartolomé Vilanova ◽  
...  

We study the effect of an advanced glycation end product (N(ε)-(carboxyethyl)lysine), found on the Lewy bodies of people suffering from Parkinson’s disease, on the conformational and aggregation features of alpha-synuclein.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 283
Author(s):  
Daniel Aghaie Madsen ◽  
Sissel Ida Schmidt ◽  
Morten Blaabjerg ◽  
Morten Meyer

Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson’s disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.


2018 ◽  
Author(s):  
Tim E. Moors ◽  
Christina A. Maat ◽  
Daniel Niedieker ◽  
Daniel Mona ◽  
Dennis Petersen ◽  
...  

AbstractPost-translational modifications of alpha-synuclein (aSyn), particularly phosphorylation at Serine 129 (Ser129-p) and truncation of its C-terminus (CTT), have been implicated in Parkinson’s disease (PD) pathology. To gain more insight in the relevance of Ser129-p and CTT aSyn under physiological and pathological conditions, we investigated their subcellular distribution patterns in normal aged and PD brains using highly-selective antibodies in combination with 3D multicolor STED microscopy. We show that CTT aSyn localizes in mitochondria in PD patients and controls, whereas the organization of Ser129-p in a cytoplasmic network is strongly associated with pathology. Nigral Lewy bodies show an onion skin-like architecture, with a structured framework of Ser129-p aSyn and neurofilaments encapsulating CTT aSyn in their core, which displayed high content of proteins and lipids by label-free CARS microscopy. The subcellular phenotypes of antibody-labeled pathology identified in this study provide evidence for a crucial role of Ser129-p aSyn in Lewy body formation.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ricardo Guerrero-Ferreira ◽  
Nicholas MI Taylor ◽  
Daniel Mona ◽  
Philippe Ringler ◽  
Matthias E Lauer ◽  
...  

Parkinson’s disease is a progressive neuropathological disorder that belongs to the class of synucleinopathies, in which the protein alpha-synuclein is found at abnormally high concentrations in affected neurons. Its hallmark are intracellular inclusions called Lewy bodies and Lewy neurites. We here report the structure of cytotoxic alpha-synuclein fibrils (residues 1–121), determined by cryo-electron microscopy at a resolution of 3.4 Å. Two protofilaments form a polar fibril composed of staggered β-strands. The backbone of residues 38 to 95, including the fibril core and the non-amyloid component region, are well resolved in the EM map. Residues 50–57, containing three of the mutation sites associated with familial synucleinopathies, form the interface between the two protofilaments and contribute to fibril stability. A hydrophobic cleft at one end of the fibril may have implications for fibril elongation, and invites for the design of molecules for diagnosis and treatment of synucleinopathies.


Author(s):  
J. Eric Ahlskog

Most of the research into the cause of Lewy disorders has focused on Parkinson’s disease, since that is the best defined of these conditions and, therefore, the most straightforward to study. Dementia with Lewy bodies (DLB) is more difficult to diagnose with certainty, especially in the early years of the disease. What we collectively learn about Parkinson’s disease will likely be very relevant to our understanding of DLB. Multiple investigations have linked Parkinson’s disease to both environmental exposures and genetic factors. However, these associations have all been modest, and none of them accounts for more than a few percent of the contribution to the cause of sporadic Parkinson’s disease (i.e., the attributable risks are low). These investigations are ongoing and hopefully will soon provide a more complete understanding of the cause(s). Perhaps the most important clue to all Lewy conditions is located in the brain: the Lewy body itself. A recent sophisticated analysis of Lewy bodies revealed approximately 300 different component proteins. However, we already knew that Lewy bodies contain high concentrations of a normal protein called alpha synuclein. In fact, Lewy bodies are conventionally identified under the microscope with antibody stains that specifically bind to alpha synuclein. Could this be the crucial protein among the nearly 300? While the alpha synuclein story is focused on Parkinson’s disease, it may be just as relevant to DLB, as we shall see. The story starts with a large Italian-American family with Parkinson’s disease, studied by Dr. Lawrence Golbe and colleagues at the Robert Wood Johnson Medical Center in New Brunswick, New Jersey. In this rare family, many members of multiple generations had been affected by Parkinson’s disease (with Lewy bodies), consistent with a single gene passed on with dominant inheritance. It took a number of years to identify that abnormal gene, which ultimately was proven to be the gene coding for alpha synuclein. It was quickly discovered that this genetic error is not present in usual cases of Parkinson’s disease.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2289 ◽  
Author(s):  
Sanjanie Fernando ◽  
Claire Y. Allan ◽  
Katelyn Mroczek ◽  
Xavier Pearce ◽  
Oana Sanislav ◽  
...  

Alpha synuclein has been linked to both sporadic and familial forms of Parkinson’s disease (PD) and is the most abundant protein in Lewy bodies a hallmark of Parkinson’s disease. The function of this protein and the molecular mechanisms underlying its toxicity are still unclear, but many studies have suggested that the mechanism of α-synuclein toxicity involves alterations to mitochondrial function. Here we expressed human α-synuclein and two PD-causing α-synuclein mutant proteins (with a point mutation, A53T, and a C-terminal 20 amino acid truncation) in the eukaryotic model Dictyostelium discoideum. Mitochondrial disease has been well studied in D. discoideum and, unlike in mammals, mitochondrial dysfunction results in a clear set of defective phenotypes. These defective phenotypes are caused by the chronic hyperactivation of the cellular energy sensor, AMP-activated protein kinase (AMPK). Expression of α-synuclein wild type and mutant forms was toxic to the cells and mitochondrial function was dysregulated. Some but not all of the defective phenotypes could be rescued by down regulation of AMPK revealing both AMPK-dependent and -independent mechanisms. Importantly, we also show that the C-terminus of α-synuclein is required and sufficient for the localisation of the protein to the cell cortex in D. discoideum.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Peng Wang ◽  
Xin Li ◽  
Xuran Li ◽  
Weiwei Yang ◽  
Shun Yu

A pathological hallmark of Parkinson’s disease (PD) is formation of Lewy bodies in neurons of the brain. This has been attributed to the spread of α-synuclein (α-syn) aggregates, which involves release of α-syn from a neuron and its reuptake by a neighboring neuron. We found that treatment with plasma from PD patients induced more α-syn phosphorylation and oligomerization than plasma from normal subjects (NS). Compared with NS plasma, PD plasma added to primary neuron cultures caused more cell death in the presence of extracellular α-syn. This was supported by the observations that phosphorylated α-syn oligomers entered neurons, rapidly increased accumulated thioflavin S-positive inclusions, and induced a series of metabolic changes that included activation of polo-like kinase 2, inhibition of glucocerebrosidase and protein phosphatase 2A, and reduction of ceramide levels, all of which have been shown to promote α-syn phosphorylation and aggregation. We also analyzed neurotoxicity of α-syn oligomers relative to plasma from different patients. Neurotoxicity was not related to age or gender of the patients. However, neurotoxicity was positively correlated with H&Y staging score. The modification in the plasma may promote spreading of α-syn aggregates via an alternative pathway and accelerate progression of PD.


Sign in / Sign up

Export Citation Format

Share Document