scholarly journals Fatty Acid and Lipopolysaccharide Effect on Beta Cells Proteostasis and its Impact on Insulin Secretion

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 884 ◽  
Author(s):  
Paloma Acosta-Montaño ◽  
Eustolia Rodríguez-Velázquez ◽  
Esmeralda Ibarra-López ◽  
Héctor Frayde-Gómez ◽  
Jaime Mas-Oliva ◽  
...  

Metabolic overload by saturated fatty acids (SFA), which comprises β-cell function, and impaired glucose-stimulated insulin secretion are frequently observed in patients suffering from obesity and type 2 diabetes mellitus. The increase of intracellular Ca2+ triggers insulin granule release, therefore several mechanisms regulate Ca2+ efflux within the β-cells, among others, the plasma membrane Ca2+-ATPase (PMCA). In this work, we describe that lipotoxicity mediated mainly by the saturated palmitic acid (PA) (16C) is associated with loss of protein homeostasis (proteostasis) and potentially cell viability, a phenomenon that was induced to a lesser extent by stearic (18C), myristic (14C) and lauric (12C) acids. PA was localized on endoplasmic reticulum, activating arms of the unfolded protein response (UPR), as also promoted by lipopolysaccharides (LPS)-endotoxins. In particular, our findings demonstrate an alteration in PMCA1/4 expression caused by PA and LPS which trigger the UPR, affecting not only insulin release and contributing to β-cell mass reduction, but also increasing reactive nitrogen species. Nonetheless, stearic acid (SA) did not show these effects. Remarkably, the proteolytic degradation of PMCA1/4 prompted by PA and LPS was avoided by the action of monounsaturated fatty acids such as oleic and palmitoleic acid. Oleic acid recovered cell viability after treatment with PA/LPS and, more interestingly, relieved endoplasmic reticulum (ER) stress. While palmitoleic acid improved the insulin release, this fatty acid seems to have more relevant effects upon the expression of regulatory pumps of intracellular Ca2+. Therefore, chain length and unsaturation of fatty acids are determinant cues in proteostasis of β-cells and, consequently, on the regulation of calcium and insulin secretion.

2015 ◽  
Vol 75 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Romano Regazzi ◽  
Adriana Rodriguez-Trejo ◽  
Cécile Jacovetti

Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.


2002 ◽  
Vol 364 (1) ◽  
pp. 219-226 ◽  
Author(s):  
Blanca RUBÍ ◽  
Peter A. ANTINOZZI ◽  
Laura HERRERO ◽  
Hisamitsu ISHIHARA ◽  
Guillermina ASINS ◽  
...  

Lipid metabolism in the β-cell is critical for the regulation of insulin secretion. Pancreatic β-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured β-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5mM glucose (1.7-fold) and 15mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15mM glucose or 30mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15mM glucose (−40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the β-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in β-cells exposed to fatty acids.


2019 ◽  
Vol 44 (12) ◽  
pp. 1355-1366 ◽  
Author(s):  
Hui Huang ◽  
Kaiyuan Yang ◽  
Rennian Wang ◽  
Woo Hyun Han ◽  
Sharee Kuny ◽  
...  

Insulin-secreting pancreatic β-cells adapt to obesity-related insulin resistance via increases in insulin secretion and β-cell mass. Failed β-cell compensation predicts the onset of type 2 diabetes (T2D). However, the mechanisms of β-cell compensation are not fully understood. Our previous study reported changes in β-cell mass during the progression of T2D in the Nile rat (NR; Arvicanthis niloticus) fed standard chow. In the present study, we measured other β-cell adaptive responses, including glucose metabolism and β-cell insulin secretion in NRs at different ages, thus characterizing NR at 2 months as a model of β-cell compensation followed by decompensation at 6 months. We observed increased proinsulin secretion in the transition from compensation to decompensation, which is indicative of impaired insulin processing. Subsequently, we compared adaptive unfolded protein response in β-cells and demonstrated a positive role of endoplasmic reticulum (ER) chaperones in insulin secretion. In addition, the incidence of insulin-positive neogenic but not proliferative cells increased during the compensation phase, suggesting nonproliferative β-cell growth as a mechanism of β-cell mass adaptation. In contrast, decreased neogenesis and β-cell dedifferentiation were observed in β-cell dysfunction. Furthermore, the progression of T2D and pathophysiological changes of β-cells were prevented by increasing fibre content of the diet. Novelty Our study characterized a novel model for β-cell compensation with adaptive responses in cell function and mass. The temporal association of adaptive ER chaperones with blood insulin and glucose suggests upregulated chaperone capacity as an adaptive mechanism. β-Cell neogenesis but not proliferation contributes to β-cell mass adaptation.


2004 ◽  
Vol 106 (2) ◽  
pp. 191-199 ◽  
Author(s):  
Gordon DIXON ◽  
John NOLAN ◽  
Neville H. McCLENAGHAN ◽  
Peter R. FLATT ◽  
Philip NEWSHOLME

Insulin-resistant states such as obesity can result in an increase in the function and mass of pancreatic β-cells, so that insulin secretion is up-regulated and Type II diabetes does not develop. However, expansion of β-cell mass is not indefinite and may well decrease with time. Changes in circulating concentrations of nutritional factors, such as fatty acids and/or glucose, may lead to a reduction in β-cell mass in vivo. Few previous studies have attempted to explore the interplay between glucose, amino acids and fatty acids with respect to β-cell mass and functional integrity. In the present study, we demonstrate that culture of clonal BRIN-BD11 cells for 24 h with the polyunsaturated fatty acid arachidonic acid (AA) increased β-cell proliferation and enhanced alanine-stimulated insulin secretion. These effects of AA were associated with significant decreases in the cellular consumption of D-glucose and L-alanine as well as decreased rates of production of nitric oxide and ammonia. Conversely 24 h exposure to the saturated fatty acid palmitic acid (PA) was found to decrease β-cell viability (by increasing apoptosis), increase the intracellular concentration of triacylglycerol (triglyceride), while inhibiting alanine-stimulated insulin secretion. These effects of PA were associated with significant increases in D-glucose and L-glutamine consumption as well as nitric oxide and ammonia production. However, L-alanine consumption was decreased in the presence of PA. The effects of AA, but not PA, were additionally dependent on glucose concentration. These studies indicate that AA may have a critical role in maintaining the appropriate mass and function of islet β-cells by influencing rates of cell proliferation and insulin secretion. This regulatory effect may be compromised by high circulating levels of glucose and/or PA, both of which are elevated in Type II diabetes and may impact upon dysfunctional and apoptotic intracellular events in the β-cell.


2020 ◽  
Author(s):  
Daniela Nasteska ◽  
Federica Cuozzo ◽  
Alpesh Thakker ◽  
Rula Bany Bakar ◽  
Rebecca Westbrook ◽  
...  

ABSTRACTThe alpha ketoglutarate-dependent dioxygenase, prolyl-4-hydroxylase 3 (PHD3), is a hypoxia-inducible factor target that uses molecular oxygen to hydroxylate proline. While PHD3 has been reported to influence cancer cell metabolism and liver insulin sensitivity, relatively little is known about effects of this highly conserved enzyme in insulin-secreting β-cells. Here, we show that deletion of PHD3 specifically in β-cells (βPHD3KO) is associated with impaired glucose homeostasis in mice fed high fat diet. In the early stages of dietary fat excess, βPHD3KO islets energetically rewire, leading to defects in the management of pyruvate fate and a shift away from glycolysis. However, βPHD3KO islets are able to maintain oxidative phosphorylation and insulin secretion by increasing utilization of fatty acids to supply the tricarboxylic acid cycle. This nutrient-sensing switch cannot be sustained and βPHD3KO islets begin to show signs of failure in response to prolonged metabolic stress, including impaired glucose-stimulated ATP/ADP rises, Ca2+ fluxes and insulin secretion. Thus, PHD3 might be a pivotal component of the β-cell glucose metabolism machinery by suppressing the use of fatty acids as a primary fuel source, under obesogenic and insulin resistant states.SIGNIFICANCE STATEMENTProlyl-4-hydroxylase 3 (PHD3) is involved in the oxygen-dependent regulation of cell phenotype. A number of recent studies have shown that PHD3 might operate at the interface between oxygen availability and metabolism. To understand how PHD3 influences insulin secretion, which depends on intact glucose metabolism, we generated mice lacking PHD3 specifically in pancreatic β-cells. These mice, termed βPHD3KO, are apparently normal until fed high fat diet at which point their β-cells switch to fatty acids as a fuel source. This switch cannot be tolerated and β-cells in βPHD3KO mice eventually fail. Thus, PHD3 maintains glucose-stimulated insulin secretion in β-cells during states of fatty acid excess, such as diabetes and obesity.


2008 ◽  
Vol 36 (5) ◽  
pp. 955-958 ◽  
Author(s):  
Deirdre Keane ◽  
Philip Newsholme

Both stimulatory and detrimental effects of NEFAs (non-esterified fatty acids) on pancreatic β-cells have been recognized. Acute exposure of the pancreatic β-cell to high glucose concentrations and/or saturated NEFAs results in a substantial increase in insulin release, whereas chronic exposure results in desensitization and suppression of secretion followed by induction of apoptosis. Some unsaturated NEFAs also promote insulin release acutely, but they are less toxic to β-cells during chronic exposure and can even exert positive protective effects. In the present review, we focus on exogenous and endogenous effects of NEFAs, including the polyunsaturated fatty acid, arachidonic acid (or its metabolites generated from cyclo-oxygenase activity), on β-cell metabolism, and have explored the outcomes with respect to β-cell insulin secretion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


2000 ◽  
Vol 279 (1) ◽  
pp. E68-E73 ◽  
Author(s):  
Ye Qi Liu ◽  
Peter W. Nevin ◽  
Jack L. Leahy

Islet β-cells are the regulatory element of the glucose homeostasis system. When functioning normally, they precisely counterbalance changes in insulin sensitivity or β-cell mass to preserve normoglycemia. This understanding seems counter to the dogma that β-cells are regulated by glycemia. We studied 60% pancreatectomy rats (Px) 4 wk postsurgery to elucidate the β-cell adaptive mechanisms. Nonfasting glycemia and insulinemia were identical in Px and sham-operated controls. There was partial regeneration of the excised β-cells in the Px rats, but it was limited in scope, with the pancreas β-cell mass reaching 55% of the shams (40% increase from the time of surgery). More consequential was a heightened glucose responsiveness of Px islets so that glucose utilization and insulin secretion per milligram of islet protein were both 80% augmented at normal levels of glycemia. Investigation of the biochemical basis showed a doubled glucokinase maximal velocity in Px islets, with no change in the glucokinase protein concentration after adjustment for the different β-cell mass in Px and sham islets. Hexokinase activity measured in islet extracts was also minimally increased, but the glucose 6-phosphate concentration and basal glucose usage of Px islets were not different from those in islets from sham-operated rats. The dominant β-cell adaptive response in the 60% Px rats was an increased catalytic activity of glucokinase. The remaining β-cells thus sense, and respond to, perceived hyperglycemia despite glycemia actually being normal. β-Cell mass and insulin secretion are both augmented so that whole pancreas insulin output, and consequently glycemia, are maintained at normal levels.


Sign in / Sign up

Export Citation Format

Share Document