scholarly journals Biological Background of Resistance to Current Standards of Care in Multiple Myeloma

Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1432 ◽  
Author(s):  
Pedro Mogollón ◽  
Andrea Díaz-Tejedor ◽  
Esperanza M. Algarín ◽  
Teresa Paíno ◽  
Mercedes Garayoa ◽  
...  

A high priority problem in multiple myeloma (MM) management is the development of resistance to administered therapies, with most myeloma patients facing successively shorter periods of response and relapse. Herewith, we review the current knowledge on the mechanisms of resistance to the standard backbones in MM treatment: proteasome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies (mAbs). In some cases, strategies to overcome resistance have been discerned, and an effort should be made to evaluate whether resensitization to these agents is feasible in the clinical setting. Additionally, at a time in which we are moving towards precision medicine in MM, it is equally important to identify reliable and accurate biomarkers of sensitivity/refractoriness to these main therapeutic agents with the goal of having more efficacious treatments and, if possible, prevent the development of relapse.

2019 ◽  
Vol 70 (1) ◽  
pp. 521-547 ◽  
Author(s):  
Chutima Kunacheewa ◽  
Robert Z. Orlowski

Multiple myeloma is diagnosed in over 100,000 patients each year worldwide, has an increasing incidence and prevalence in many regions, and follows a relapsing course, making it a significant and growing healthcare challenge. Recent basic, translational, and clinical studies have expanded our therapeutic armamentarium, which now consists of alkylating agents, corticosteroids, deacetylase inhibitors, immunomodulatory agents, monoclonal antibodies, and proteasome inhibitors. New drugs in these categories, and additional agents, including both small and large molecules, as well as cellular therapies, are under development that promise to further expand our capabilities and bring us closer to the cure of this plasma cell dyscrasia.


2019 ◽  
Vol 26 (32) ◽  
pp. 5968-5981 ◽  
Author(s):  
Mattia D’Agostino ◽  
Giulia Gazzera ◽  
Giusy Cetani ◽  
Sara Bringhen ◽  
Mario Boccadoro ◽  
...  

Background: Survival of multiple myeloma patients has considerably improved in the last decades thanks to the introduction of many new drugs, including immunomodulatory agents, proteasome inhibitors and, more recently, monoclonal antibodies. Methods: We analyzed the most recent literature focusing on the clinical and pharmacologic aspects of monoclonal antibody-based therapies in multiple myeloma, including monoclonal antibodies directed against plasma cell antigens, as well as checkpoint blockade therapy directed against immune inhibitory molecules, used as single agents or in combination therapy. Results: Anti-CD38 monoclonal antibodies including daratumumab, isatuximab and MOR202 have shown outstanding results in relapsed and/or refractory multiple myeloma patients. The addition of daratumumab to bortezomib-dexamethasone or lenalidomidedexamethasone substantially improved patients’ outcome in this patient population. The anti- SLAMF7 molecule elotuzumab in combination with lenalidomide-dexamethasone showed to be superior to lenalidomide-dexamethasone alone, without adding meaningful toxicity. Checkpoint blockade therapy in combination with immunomodulatory agents produced objective responses in more than 50% of treated patients. However, this combination was also associated with an increase in toxicity and a thorough safety evaluation is currently ongoing. Conclusion: Monoclonal antibodies are reshaping the standard of care for multiple myeloma and ongoing trials will help physicians to optimize their use in order to further improve patients’ outcome.


Hemato ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 167-181
Author(s):  
Marie Thérèse Rubio ◽  
Adèle Dhuyser ◽  
Stéphanie Nguyen

Myeloma tumor cells are particularly dependent on their microenvironment and sensitive to cellular antitumor immune response, including natural killer (NK) cells. These later are essential innate lymphocytes implicated in the control of viral infections and cancers. Their cytotoxic activity is regulated by a balance between activating and inhibitory signals resulting from the complex interaction of surface receptors and their respective ligands. Myeloma disease evolution is associated with a progressive alteration of NK cell number, phenotype and cytotoxic functions. We review here the different therapeutic approaches that could restore or enhance NK cell functions in multiple myeloma. First, conventional treatments (immunomodulatory drugs-IMids and proteasome inhibitors) can enhance NK killing of tumor cells by modulating the expression of NK receptors and their corresponding ligands on NK and myeloma cells, respectively. Because of their ability to kill by antibody-dependent cell cytotoxicity, NK cells are important effectors involved in the efficacy of anti-myeloma monoclonal antibodies targeting the tumor antigens CD38, CS1 or BCMA. These complementary mechanisms support the more recent therapeutic combination of IMids or proteasome inhibitors to monoclonal antibodies. We finally discuss the ongoing development of new NK cell-based immunotherapies, such as ex vivo expanded killer cell immunoglobulin-like receptors (KIR)-mismatched NK cells, chimeric antigen receptors (CAR)-NK cells, check point and KIR inhibitors.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pilar de la Puente ◽  
Barbara Muz ◽  
Feda Azab ◽  
Micah Luderer ◽  
Abdel Kareem Azab

Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients will eventually relapse or become refractory to the treatments. Although the treatments have improved, the major problem in MM is the resistance to therapy. Novel agents are currently in development for the treatment of relapsed/refractory MM, including immunomodulatory drugs, proteasome inhibitors, monoclonal antibodies, cell signaling targeted therapies, and strategies targeting the tumor microenvironment. We have previously reviewed in detail the contemporary immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies therapies for MM. Therefore, in this review, we focused on the role of molecular targeted therapies in the treatment of relapsed/refractory multiple myeloma, including cell signaling targeted therapies (HDAC, PI3K/AKT/mTOR, p38 MAPK, Hsp90, Wnt, Notch, Hedgehog, and cell cycle) and strategies targeting the tumor microenvironment (hypoxia, angiogenesis, integrins, CD44, CXCR4, and selectins). Although these novel agents have improved the therapeutic outcomes for MM patients, further development of new therapeutic agents is warranted.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Ricardo D. Parrondo ◽  
Vivek Roy ◽  
Taimur Sher ◽  
Victoria Alegria ◽  
Asher A. Chanan-Khan ◽  
...  

Extramedullary multiple myeloma is defined by the presence of plasma cell infiltration outside of the bone marrow. It is associated with a poor prognosis and resistance to therapy and is often associated with high-risk cytogenetics. Aggressive relapsed and refractory extramedullary multiple myeloma is often treated with salvage infusional chemotherapy to achieve rapid disease control. Commonly used regimens include DCEP, CVAD, and VTD-PACE. While VTD-PACE contains bortezomib and thalidomide which have potent antimyeloma activity, the advent of novel agent therapy with proteasome inhibitors and immunomodulatory agents being used in the first-line setting has resulted in many patients being refractory to bortezomib by the time they are treated with VTD-PACE. Herein, we discuss two cases of aggressive relapsed, high-risk, bortezomib-refractory extramedullary multiple myeloma treated with KRD-PACE and review the available clinical data on salvage chemotherapy regimens used in relapsed refractory myeloma.


2020 ◽  
Vol 16 (2) ◽  
pp. 56-66 ◽  
Author(s):  
Ricardo D. Parrondo ◽  
Sikander Ailawadhi ◽  
Taimur Sher ◽  
Asher A. Chanan-Khan ◽  
Vivek Roy

Despite the evolution of the therapeutic arsenal for the treatment of multiple myeloma (MM) over the past decade, autologous stem-cell transplantation (ASCT) remains an integral part of the treatment of patients with both newly diagnosed and relapsed MM. The advent of novel therapies, such as immunomodulatory agents, proteasome inhibitors, and monoclonal antibodies, has led to unprecedented levels of deep hematologic responses. Nonetheless, studies show that ASCT has an additive effect leading to additional deepening of responses. As the therapeutic agents for MM continue to evolve, the timing, duration, and sequence of their use in combination with ASCT will be crucial to understand to obtain the deepest response and survival benefit for patients with MM. This review aims to discuss the role of ASCT for the management of MM, with a particular focus on the role of ASCT in the context of novel therapies and minimal residual disease.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2666
Author(s):  
Beatrice Anna Zannetti ◽  
Angelo Corso Faini ◽  
Evita Massari ◽  
Massimo Geuna ◽  
Enrico Maffini ◽  
...  

Multiple myeloma (MM) is a hematological disease characterized by the proliferation and accumulation of malignant plasmacells (PCs) in the bone marrow (BM). Despite widespread use of high-dose chemotherapy in combination with autologous stem cell transplantation (ASCT) and the introduction of novel agents (immunomodulatory drugs, IMiDs, and proteasome inhibitors, PIs), the prognosis of MM patients is still poor. CD38 is a multifunctional cell-surface glycoprotein with receptor and ectoenzymatic activities. The very high and homogeneous expression of CD38 on myeloma PCs makes it an attractive target for novel therapeutic strategies. Several anti-CD38 monoclonal antibodies have been, or are being, developed for the treatment of MM, including daratumumab and isatuximab. Here we provide an in-depth look atCD38 biology, the role of CD38 in MM progression and its complex interactions with the BM microenvironment, the importance of anti-CD38 monoclonal antibodies, and the main mechanisms of antibody resistance. We then review a number of multiparametric flow cytometry techniques exploiting CD38 antigen expression on PCs to diagnose and monitor the response to treatment in MM patients.


Sign in / Sign up

Export Citation Format

Share Document