scholarly journals Extracellular Vesicle-Mediated Communication between the Glioblastoma and Its Microenvironment

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 96 ◽  
Author(s):  
Esperanza R. Matarredona ◽  
Angel M. Pastor

The glioblastoma is the most malignant form of brain cancer. Glioblastoma cells use multiple ways of communication with the tumor microenvironment in order to tune it for their own benefit. Among these, extracellular vesicles have emerged as a focus of study in the last few years. Extracellular vesicles contain soluble proteins, DNA, mRNA and non-coding RNAs with which they can modulate the phenotypes of recipient cells. In this review we summarize recent findings on the extracellular vesicles-mediated bilateral communication established between glioblastoma cells and their tumor microenvironment, and the impact of this dialogue for tumor progression and recurrence.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


2021 ◽  
Author(s):  
Anuj K Yadav ◽  
Michael C. Lee ◽  
Melissa Lucero ◽  
Christopher J. Reinhardt ◽  
ShengZhang Su ◽  
...  

<p>Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO’s contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO’s impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed <i>in vivo </i>and fewer yet are practical in cancer models where the NO concentration is < 200 nM. To overcome this outstanding challenge, we have developed BL<sub>660</sub>-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL<sub>660</sub>-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated the design of a dietary study to examine the impact of NO on the TME by varying the intake of fat. BL<sub>660</sub>-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet who became obese with larger tumors compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of iNOS which in turn can drive tumor progression.<br></p>


2020 ◽  
Vol 10 ◽  
Author(s):  
Bene A. Ekine-Afolabi ◽  
Anoka A. Njan ◽  
Solomon O. Rotimi ◽  
Anu R. I. ◽  
Attia M. Elbehi ◽  
...  

Cancer is the major cause of morbidity and mortality in the world today. The third most common cancer and which is most diet related is colorectal cancer (CRC). Although there is complexity and limited understanding in the link between diet and CRC, the advancement in research methods have demonstrated the involvement of non-coding RNAs (ncRNAs) as key regulators of gene expression. MicroRNAs (miRNAs) which are a class of ncRNAs are key players in cancer related pathways in the context of dietary modulation. The involvement of ncRNA in cancer progression has recently been clarified throughout the last decade. ncRNAs are involved in biological processes relating to tumor onset and progression. The advances in research have given insights into cell to cell communication, by highlighting the pivotal involvement of extracellular vesicle (EV) associated-ncRNAs in tumorigenesis. The abundance and stability of EV associated ncRNAs act as a new diagnostic and therapeutic target for cancer. The understanding of the deranging of these molecules in cancer can give access to modulating the expression of the ncRNAs, thereby influencing the cancer phenotype. Food derived exosomes/vesicles (FDE) are gaining interest in the implication of exosomes in cell-cell communication with little or no understanding to date on the role FDE plays. There are resident microbiota in the colon; to which the imbalance in the normal intestinal occurrence leads to chronic inflammation and the production of carcinogenic metabolites that lead to neoplasm. Limited studies have shown the implication of various types of microbiome in CRC incidence, without particular emphasis on fungi and protozoa. This review discusses important dietary factors in relation to the expression of EV-associated ncRNAs in CRC, the impact of diet on the colon ecosystem with particular emphasis on molecular mechanisms of interactions in the ecosystem, the influence of homeostasis regulators such as glutathione, and its conjugating enzyme-glutathione S-transferase (GST) polymorphism on intestinal ecosystem, oxidative stress response, and its relationship to DNA adduct fighting enzyme-0-6-methylguanine-DNA methyltransferase. The understanding of the molecular mechanisms and interaction in the intestinal ecosystem will inform on the diagnostic, preventive and prognosis as well as treatment of CRC.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii64-ii64
Author(s):  
Hassan Azari ◽  
Nasser Nassiri Koopaei ◽  
Mohammad-Zaman Nouri ◽  
Jesse D Hall ◽  
Nancy D Denslow ◽  
...  

Abstract INTRODUCTION Extracellular vesicles (EVs) have been harvested from many plant sources, some of which have anti-cancer effects and some could be used as therapeutic nanodelivery vectors. Hemp plant is a natural source of cannabinoids, of which delta 9-tetrahydroxicannabinol (THC) and cannabidiol (CBD) have proven anti-cancer proprieties. HYPOTHESIS We hypothesized that hemp EVs are enriched in cannabinoids and their application will reduce glioblastoma (GBM) tumor progression. APPROACH EVs were isolated from the hemp plant using ultracentrifugation. Nanotracking analysis, electron microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS) were utilized to characterize EVs. GBM cell lines were cultured in the neuropshere assay to evaluate hemp EVs anti-glioma effects. Fluorescent-labelled EVs were used to evaluate their brain tissue distribution in orthotopic patient-derived GBM xenografts. RESULTS Hemp EVs have a median diameter of 112.6nm with a typical lipid-bilayer structure. LC-MS/MS have shown that while cannabidiolic, cannabigerolic, and tetrahydroxicannabinolic acids represent 69.1 ± 2.1%, 19.1 ± 1.6%, 6.5 ± 0.54% of the total cannabinoids in hemp EVs, CBD and THC only make 4.75 ± 0.26%, and 0.5 ± 0.3%. Hemp EVs are potent anti-glioma agents with a 7-day LD-50 of 1.04µM and 2.4µM [based on EVs total cannabinoid content] for KR-158 and L0 GBM lines, respectively. Compared to the vehicle, overnight incubation of L0 cells with 1µM hemp EVs significantly reduced GBM cell migration (630.3 ± 61.43 vs 143.7 ± 8.7). Intranasal administration of hemp EVs led to a widespread distribution in tumor bearing brain including GBM tumor core. CONCLUSION Based on these results, hemp EVs with enriched cannabinoid content exert antiglioma effect in-vitro and when delivered intranasally, are widely distributed throughout the brain and within the tumor of PDX animals. Further experiments are ongoing to address the impact of nasally-delivered hemp EVs on tumor progression and compare to the application of purified acidic cannabinoids.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi250-vi250
Author(s):  
Patricia Yee ◽  
Yiju Wei ◽  
Zhijun Liu ◽  
Hui Guo ◽  
Umeshkumar Manjibhai Vekariya ◽  
...  

Abstract Glioblastoma (GBM), the deadliest and most common adult brain malignancy, is molecularly and clinically heterogeneous. The most common subtype (both primary and recurrent), mesenchymal (MES)-GBM, has the worst prognosis and highest treatment resistance. MES-GBM exhibits hyperactive transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo tumor suppressive pathway effector whose expression in GBMs predicts short survival. Yet, how Hippo-TAZ dysregulation might drive GBM MES transition remains elusive, precluding subtype-specific treatments. Tumor evolution requires signaling dysregulation and co-opting the tumor microenvironment (TME). Understanding GBM heterogeneity was recently complicated by the notion that subtypes vary in TME immune composition. The MES-GBM TME is differentially-distorted in silico, with more tumor-associated macrophages/microglia (TAMs) and neutrophils (TANs). Yet, how TAZ hyperactivity, MES transition, and GBM TME distortion interrelate and impact tumor progression remains unknown. We suspected that TME distortion facilitates immune evasion, MES transition, and tumor progression, worsening treatment responses. To test this, we devised an orthotopic xenograft mouse model phenotypically and histopathologically recapitulating human MES-GBM by expressing constitutively-active TAZ (TAZ4SA) in human GBM cells lacking MES signatures (GBM4SA). GBM4SA mice lived significantly shorter compared to mice with GBM expressing vector (GBMvector) or mutant TAZ unable to bind its effector, TEAD (GBM4SA-S51A). Moreover, more myeloid cells infiltrate the GBM4SA TME than the GBMvector or GBM4SA-S51A TMEs. While most myeloid cells infiltrating the GBMvector and GBM4SA-S51A TMEs were TAMs, most infiltrating the GBM4SA TME were TANs, suggesting TAZ hyperactivation differentially distorts the TME. Next, to delineate the roles of TANs in GBM4SA tumor progression, mice were depleted of neutrophils by administering Ly6G antibody. Serial blood smears and flow cytometry revealed effective depletion was achieved. We are currently investigating the impact of systemic neutrophil depletion on GBM mesenchymal transition and tumor progression in hopes of informing future GBM clinical management and novel TME-targeted immunotherapies.


2014 ◽  
Vol 16 (suppl 2) ◽  
pp. ii28-ii28
Author(s):  
H. Ding ◽  
S. Pinel ◽  
V. Jouan-Hureaux ◽  
A. Chateau ◽  
C. Boura ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5195 ◽  
Author(s):  
Magdalena Żmigrodzka ◽  
Olga Witkowska-Piłaszewicz ◽  
Anna Winnicka

Extracellular vesicles (EVs) are a diverse group of membrane-bound structures secreted in physiological and pathological conditions by prokaryotic and eukaryotic cells. Their role in cell-to-cell communications has been discussed for more than two decades. More attention is paid to assess the impact of EVs in cancer. Numerous papers showed EVs as tumorigenesis regulators, by transferring their cargo molecules (miRNA, DNA, protein, cytokines, receptors, etc.) among cancer cells and cells in the tumor microenvironment. During platelet activation or apoptosis, platelet extracellular vesicles (PEVs) are formed. PEVs present a highly heterogeneous EVs population and are the most abundant EVs group in the circulatory system. The reason for the PEVs heterogeneity are their maternal activators, which is reflected on PEVs size and cargo. As PLTs role in cancer development is well-known, and PEVs are the most numerous EVs in blood, their feasible impact on cancer growth is strongly discussed. PEVs crosstalk could promote proliferation, change tumor microenvironment, favor metastasis formation. In many cases these functions were linked to the transfer into recipient cells specific cargo molecules from PEVs. The article reviews the PEVs biogenesis, cargo molecules, and their impact on the cancer progression.


2021 ◽  
Author(s):  
Anuj K Yadav ◽  
Michael C. Lee ◽  
Melissa Lucero ◽  
Christopher J. Reinhardt ◽  
ShengZhang Su ◽  
...  

<p>Nitric oxide (NO) plays a critical role in acute and chronic inflammation. NO’s contributions to cancer are of particular interest due to its context-dependent bioactivities. For example, immune cells initially produce cytotoxic quantities of NO in response to the nascent tumor. However, it is believed that this fades over time and reaches a concentration that supports the tumor microenvironment (TME). These complex dynamics are further complicated by other factors, such as diet and oxygenation, making it challenging to establish a complete picture of NO’s impact on tumor progression. Although many activity-based sensing (ABS) probes for NO have been developed, only a small fraction have been employed <i>in vivo </i>and fewer yet are practical in cancer models where the NO concentration is < 200 nM. To overcome this outstanding challenge, we have developed BL<sub>660</sub>-NO, the first ABS probe for NIR bioluminescence imaging of NO in cancer. Owing to the low intrinsic background, high sensitivity, and deep tissue imaging capabilities of our design, BL<sub>660</sub>-NO was successfully employed to visualize endogenous NO in cellular systems, a human liver metastasis model, and a murine breast cancer model. Importantly, its exceptional performance facilitated the design of a dietary study to examine the impact of NO on the TME by varying the intake of fat. BL<sub>660</sub>-NO provides the first direct molecular evidence that intratumoral NO becomes elevated in mice fed a high-fat diet who became obese with larger tumors compared to control animals on a low-fat diet. These results indicate that an inflammatory diet can increase NO production via recruitment of macrophages and overexpression of iNOS which in turn can drive tumor progression.<br></p>


Sign in / Sign up

Export Citation Format

Share Document