scholarly journals Graptopetalum paraguayense Inhibits Liver Fibrosis by Blocking TGF-β Signaling In Vivo and In Vitro

2019 ◽  
Vol 20 (10) ◽  
pp. 2592 ◽  
Author(s):  
Wei-Hsiang Hsu ◽  
Se-Chun Liao ◽  
Yau-Jan Chyan ◽  
Kai-Wen Huang ◽  
Shih-Lan Hsu ◽  
...  

Background and Aims: Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, which occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension. Activated hepatic perivascular stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines, such as TGF-β1. The inhibition of TGF-β1 function or synthesis is a major target for the development of antifibrotic therapies. Our previous study showed that the water and ethanol extracts of Graptopetalum paraguayense (GP), a Chinese herbal medicine, can prevent dimethylnitrosamine (DMN)-induced hepatic inflammation and fibrosis in rats. Methods: We used rat hepatic stellate HSC-T6 cells and a diethylnitrosamine (DEN)-induced rat liver injury model to test the potential mechanism of GP extracts and its fraction, HH-F3. Results: We demonstrated that GP extracts and HH-F3 downregulated the expression levels of extracellular matrix (ECM) proteins and inhibited the proliferation and migration via suppression of the TGF-β1 pathway in rat hepatic stellate HSC-T6 cells. Moreover, the HH-F3 fraction decreased hepatic collagen content and reduced plasma AST, ALT, and γ-GT activities in a DEN-induced rat liver injury model, suggesting that GP/HH-F3 has hepatoprotective effects against DEN-induced liver fibrosis. Conclusion: These findings indicate that GP/HH-F3 may be a potential therapeutic agent for the treatment of liver fibrosis. The inhibition of TGF-β-mediated fibrogenesis may be a central mechanism by which GP/HH-F3 protects the liver from injury.

2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei Dai ◽  
Shenglan Liu ◽  
Shubo Wang ◽  
Li Zhao ◽  
Xiao Yang ◽  
...  

AbstractColonization is believed a rate-limiting step of metastasis cascade. However, its underlying mechanism is not well understood. Uveal melanoma (UM), which is featured with single organ liver metastasis, may provide a simplified model for realizing the complicated colonization process. Because DDR1 was identified to be overexpressed in UM cell lines and specimens, and abundant pathological deposition of extracellular matrix collagen, a type of DDR1 ligand, was noted in the microenvironment of liver in metastatic patients with UM, we postulated the hypothesis that DDR1 and its ligand might ignite the interaction between UM cells and their surrounding niche of liver thereby conferring strengthened survival, proliferation, stemness and eventually promoting metastatic colonization in liver. We tested this hypothesis and found that DDR1 promoted these malignant cellular phenotypes and facilitated metastatic colonization of UM in liver. Mechanistically, UM cells secreted TGF-β1 which induced quiescent hepatic stellate cells (qHSCs) into activated HSCs (aHSCs) which secreted collagen type I. Such a remodeling of extracellular matrix, in turn, activated DDR1, strengthening survival through upregulating STAT3-dependent Mcl-1 expression, enhancing stemness via upregulating STAT3-dependent SOX2, and promoting clonogenicity in cancer cells. Targeting DDR1 by using 7rh, a specific inhibitor, repressed proliferation and survival in vitro and in vivo outgrowth. More importantly, targeting cancer cells by pharmacological inactivation of DDR1 or targeting microenvironmental TGF-β1-collagen I loop exhibited a prominent anti-metastasis effect in mice. In conclusion, targeting DDR1 signaling and TGF-β signaling may be a novel approach to diminish hepatic metastasis in UM.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-325065
Author(s):  
Chen-Ting Hung ◽  
Tung-Hung Su ◽  
Yen-Ting Chen ◽  
Yueh-Feng Wu ◽  
You-Tzung Chen ◽  
...  

Background and objectivesLiver fibrosis (LF) occurs following chronic liver injuries. Currently, there is no effective therapy for LF. Recently, we identified thioredoxin domain containing 5 (TXNDC5), an ER protein disulfide isomerase (PDI), as a critical mediator of cardiac and lung fibrosis. We aimed to determine if TXNDC5 also contributes to LF and its potential as a therapeutic target for LF.DesignHistological and transcriptome analyses on human cirrhotic livers were performed. Col1a1-GFPTg, Alb-Cre;Rosa26-tdTomato and Tie2-Cre/ERT2;Rosa26-tdTomato mice were used to determine the cell type(s) where TXNDC5 was induced following liver injury. In vitro investigations were conducted in human hepatic stellate cells (HSCs). Col1a2-Cre/ERT2;Txndc5fl/fl (Txndc5cKO) and Alb-Cre;Txndc5fl/fl (Txndc5Hep-cKO) mice were generated to delete TXNDC5 in HSCs and hepatocytes, respectively. Carbon tetrachloride treatment and bile duct ligation surgery were employed to induce liver injury/fibrosis in mice. The extent of LF was quantified using histological, imaging and biochemical analyses.ResultsTXNDC5 was upregulated markedly in human and mouse fibrotic livers, particularly in activated HSC at the fibrotic foci. TXNDC5 was induced by transforming growth factor β1 (TGFβ1) in HSCs and it was both required and sufficient for the activation, proliferation, survival and extracellular matrix production of HSC. Mechanistically, TGFβ1 induces TXNDC5 expression through increased ER stress and ATF6-mediated transcriptional regulation. In addition, TXNDC5 promotes LF by redox-dependent JNK and signal transducer and activator of transcription 3 activation in HSCs through its PDI activity, activating HSCs and making them resistant to apoptosis. HSC-specific deletion of Txndc5 reverted established LF in mice.ConclusionsER protein TXNDC5 promotes LF through redox-dependent HSC activation, proliferation and excessive extracellular matrix production. Targeting TXNDC5, therefore, could be a potential novel therapeutic strategy to ameliorate LF.


2020 ◽  
Vol 98 (3) ◽  
pp. 162-168 ◽  
Author(s):  
Yong-mei Jin ◽  
Xiang-ming Tao ◽  
Yi-ning Shi ◽  
Youjin Lu ◽  
Jin-yu Mei

Salvianolic acid B (Sal B) exerts strong antioxidant activity and eliminates the free radical effect. However, how it affects the antioxidant pathway is not very clear. The objective of this study was to investigate the underlying mechanism of Sal B in CCl4-induced acute liver injury, especially its effect on the Nrf2/HO-1 signaling pathway. For the in vivo experiment, an acute liver injury model was induced using CCl4 and treated with Sal B. For the in vitro experiment, an oxidative damage model was established followed by Sal B treatment. Serum biochemical indicators and reactive oxygen species activity were detected using corresponding kits. Oxidant/antioxidant status was determined based on the levels of malondialdehyde, glutathione, and superoxide dismutase. Nrf2 and HO-1 levels were analyzed by Western blotting and immunohistochemical staining. Sal B treatment improved liver histology, decreased the aminotransferase levels, and attenuated oxidative stress in the acute liver injury model. Nrf2 and HO-1 levels were increased both in vivo and in vitro. Sal B suppresses acute liver injury and Nrf2/HO-1 signaling plays a key role in this process.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xin-Yi Xu ◽  
Yan Du ◽  
Xue Liu ◽  
Yilin Ren ◽  
Yingying Dong ◽  
...  

Abstract Background Hepatic fibrosis is a pathological response of the liver to a variety of chronic stimuli. Hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. Follistatin like 1 (Fstl1) is a secreted glycoprotein induced by transforming growth factor-β1 (TGF-β1). However, the precise functions and regulation mechanisms of Fstl1 in liver fibrogenesis remains unclear. Methods Hepatic stellate cell (HSC) line LX-2 stimulated by TGF-β1, primary culture of mouse HSCs and a model of liver fibrosis induced by CCl4 in mice was used to assess the effect of Fstl1 in vitro and in vivo. Results Here, we found that Fstl1 was significantly up regulated in human and mouse fibrotic livers, as well as activated HSCs. Haplodeficiency of Fstl1 or blockage of Fstl1 with a neutralizing antibody 22B6 attenuated CCl4-induced liver fibrosis in vivo. Fstl1 modulates TGF-β1 classic Samd2 and non-classic JNK signaling pathways. Knockdown of Fstl1 in HSCs significantly ameliorated cell activation, cell migration, chemokines C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 8 (CXCL8) secretion and extracellular matrix (ECM) production, and also modulated microRNA-29a (miR29a) expression. Furthermore, we identified that Fstl1 was a target gene of miR29a. And TGF-β1 induction of Fstl1 expression was partially through down regulation of miR29a in HSCs. Conclusions Our data suggests TGF-β1-miR29a-Fstl1 regulatory circuit plays a key role in regulation the HSC activation and ECM production, and targeting Fstl1 may be a strategy for the treatment of liver fibrosis. Graphical abstract


2011 ◽  
Vol 300 (2) ◽  
pp. G316-G326 ◽  
Author(s):  
Melania Scarpa ◽  
Alessia R. Grillo ◽  
Paola Brun ◽  
Veronica Macchi ◽  
Annalisa Stefani ◽  
...  

Following liver injury, the wound-healing process is characterized by hepatic stellate cell (HSC) activation from the quiescent fat-storing phenotype to a highly proliferative myofibroblast-like phenotype. Snail1 is a transcription factor best known for its ability to trigger epithelial-mesenchymal transition, to influence mesoderm formation during embryonic development, and to favor cell survival. In this study, we evaluated the expression of Snail1 in experimental and human liver fibrosis and analyzed its role in the HSC transdifferentiation process. Liver samples from patients with liver fibrosis and from mice treated by either carbon tetrachloride (CCl4) or thioacetamide (TAA) were evaluated for mRNA expression of Snail1. The transcription factor expression was investigated by immunostaining and real-time quantitative RT-PCR (qRT-PCR) on in vitro and in vivo activated murine HSC. Snail1 knockdown studies on cultured HSC and on CCl4-treated mice were performed by adenoviral delivery of short-hairpin RNA; activation-related genes were quantitated by real-time qRT-PCR and Western blotting. Snail1 mRNA expression resulted upregulated in murine experimental models of liver injury and in human hepatic fibrosis. In vitro studies showed that Snail1 is expressed by HSC and that its transcription is augmented in in vitro and in vivo activated HSC compared with quiescent HSC. At the protein level, we could observe the nuclear translocation of Snail1 in activated HSC. Snail1 knockdown resulted in the downregulation of activation-related genes both in vitro and in vivo. Our data support a role for Snail1 transcription factor in the hepatic wound-healing response and its involvement in the HSC transdifferentiation process.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Min Liu ◽  
Youwei Xu ◽  
Xu Han ◽  
Lianhong Yin ◽  
Lina Xu ◽  
...  

Abstract The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sulaiman Shams ◽  
Sadia Mohsin ◽  
Ghazanfar Ali Nasir ◽  
Mohsin Khan ◽  
Shaheen N. Khan

Stem cells have opened a new avenue to treat liver fibrosis. We investigated in vitro and in vivo the effect of cytokine (HGF and FGF4) pretreated MSCs in reduction of CCl4liver injury. Mouse MSCs were pretreated with cytokines to improve their ability to reduce CCl4injury. In vitro we gave CCl4injury to mouse hepatocytes and cocultured it with untreated and cytokines pretreated MSCs. For in vivo study we labeled MSCs with PKH-26 and transplanted them into CCl4injured mice by direct injection into liver. In vitro data showed that cytokines pretreated MSCs significantly reduce LDH level and apoptotic markers in CCl4injured hepatocytes cocultured model. Furthermore the cytokines pretreated MSCs also improved cell viability and enhanced hepatic and antiapoptotic markers in injured hepatocytes cocultured model as compared to untreated MSCs. In vivo data in cytokines pretreated group demonstrated greater homing of MSCs in liver, restored glycogen storage, and significant reduction in collagen, alkaline phosphatase, and bilirubin levels. TUNEL assay and real time PCR also supported our hypothesis. Therefore, cytokines pretreated MSCs were shown to have a better therapeutic potential on reduction of liver injury. These results demonstrated the potential utility of this novel idea of cytokines pretreated MSCs for the treatment of liver fibrosis.


2021 ◽  
Vol 22 (24) ◽  
pp. 13354
Author(s):  
Seita Kataoka ◽  
Atsushi Umemura ◽  
Keiichiro Okuda ◽  
Hiroyoshi Taketani ◽  
Yuya Seko ◽  
...  

Chronic liver injury may result in hepatic fibrosis, which can progress to cirrhosis and eventually liver failure. There are no drugs that are specifically approved for treating hepatic fibrosis. The natural product honokiol (HNK), a bioactive compound extracted from Magnolia grandiflora, represents a potential tool in the management of hepatic fibrosis. Though HNK has been reported to exhibit suppressive effects in a rat fibrosis model, the mechanisms accounting for this suppression remain unclear. In the present study, the anti-fibrotic effects of HNK on the liver were evaluated in vivo and in vitro. In vivo studies utilized a murine liver fibrosis model, in which fibrosis is induced by treatment with carbon tetrachloride (CCl4). For in vitro studies, LX-2 human hepatic stellate cells (HSCs) were treated with HNK, and expression of markers of fibrosis, cell viability, the transforming growth factor-β (TGF-β1)/SMAD signaling pathway, and autophagy were analyzed. HNK was well tolerated and significantly attenuated CCl4-induced liver fibrosis in vivo. Moreover, HNK decreased HSC activation and collagen expression by downregulating the TGF-β1/SMAD signaling pathway and autophagy. These results suggest that HNK is a new potential candidate for the treatment of hepatic fibrosis through suppressing both TGF-β1/SMAD signaling and autophagy in HSCs.


2021 ◽  
Author(s):  
Keel Yong Lee ◽  
Huong Nguyen ◽  
Agustina Setiawati ◽  
So-Jung Nam ◽  
Minyoung Kim ◽  
...  

Abstract The unfolded states of fibronectin (FN) subsequently induce the formation of the extracellular matrix (ECM) fibrillar network, which is necessary to generate new substitutive tissues. Here, we demonstrate that negatively charged small unilamellar vesicles (SUVs) qualify as candidates for FN delivery due to their remarkable effects on the autonomous binding and unfolding of FN, which leads to increased tissue regeneration. In vitro experiments revealed that the FN-SUV complex remarkably increased the attachment, differentiation, and migration of fibroblasts. The potential utilization of this complex in vivo to treat inflammatory colon diseases is also described based on results obtained for ameliorated conditions in rats with ulcerative colitis (UC) that had been treated with the FN-SUV complex. Our findings provide a new ECM-delivery platform for ECM-based therapeutic applications and suggest that properly designed SUVs could be an unprecedented FN-delivery system that is highly effective in treating UC and other diseases.


Sign in / Sign up

Export Citation Format

Share Document