scholarly journals t(8;21) Acute Myeloid Leukemia as a Paradigm for the Understanding of Leukemogenesis at the Level of Gene Regulation and Chromatin Programming

Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2681
Author(s):  
Sophie Kellaway ◽  
Paulynn S. Chin ◽  
Farnaz Barneh ◽  
Constanze Bonifer ◽  
Olaf Heidenreich

Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness. One of the best-studied AML-subtypes is the t(8;21) AML which carries a translocation fusing sequences encoding the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO gene. The resulting oncoprotein, RUNX1/ETO has been studied for decades, both at the biochemical but also at the systems biology level. It functions as a dominant-negative version of RUNX1 and interferes with multiple cellular processes associated with myeloid differentiation, growth regulation and genome stability. In this review, we summarize our current knowledge of how this protein reprograms normal into malignant cells and how our current knowledge could be harnessed to treat the disease.

2019 ◽  
Vol 18 ◽  
pp. 117693511985986 ◽  
Author(s):  
Salam A Assi ◽  
Constanze Bonifer ◽  
Peter N Cockerill

Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFβ and C/EBPα. By identifying specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML development and maintenance, which could now be targeted in personalized therapies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Philipp Makowka ◽  
Verena Stolp ◽  
Karoline Stoschek ◽  
Hubert Serve

Abstract Acute myeloid leukemia (AML) is a heterogeneous, highly malignant disease of the bone marrow. After decades of slow progress, recent years saw a surge of novel agents for its treatment. The most recent advancement is the registration of the Bcl-2 inhibitor ventoclax in combination with a hypomethylating agent (HMA) in the US and Europe for AML patients not eligible for intensive chemotherapy. Treatment of newly diagnosed AML patients with this combination results in remission rates that so far could only be achieved with intensive treatment. However, not all AML patients respond equally well, and some patients relapse early, while other patients experience longer periods of complete remission. A hallmark of AML is its remarkable genetic, molecular and clinical heterogeneity. Here, we review the current knowledge about molecular features of AML that help estimate the probability of response to venetoclax-containing therapies. In contrast to other newly developed AML therapies that target specific recurrent molecular alterations, it seems so far that responses are not specific for a certain subgroup. One exception is spliceosome mutations, where good response has been observed in clinical trials with venetoclax/azacitidine. These mutations are rather associated with a more unfavorable outcome with chemotherapy. In summary, venetoclax in combination with hypomethylating agents represents a significant novel option for AML patients with various molecular aberrations. Mechanisms of primary and secondary resistance seem to overlap with those towards chemotherapy.


2019 ◽  
Vol 3 (13) ◽  
pp. 1989-2002 ◽  
Author(s):  
Petra Aigner ◽  
Tatsuaki Mizutani ◽  
Jaqueline Horvath ◽  
Thomas Eder ◽  
Stefan Heber ◽  
...  

Abstract Signal transducer and activator of transcription 3 (STAT3) exists in 2 alternatively spliced isoforms, STAT3α and STAT3β. Although truncated STAT3β was originally postulated to act as a dominant-negative form of STAT3α, it has been shown to have various STAT3α-independent regulatory functions. Recently, STAT3β gained attention as a powerful antitumorigenic molecule in cancer. Deregulated STAT3 signaling is often found in acute myeloid leukemia (AML); however, the role of STAT3β in AML remains elusive. Therefore, we analyzed the STAT3β/α messenger RNA (mRNA) expression ratio in AML patients, where we observed that a higher STAT3β/α mRNA ratio correlated with a favorable prognosis and increased overall survival. To gain better understanding of the function of STAT3β in AML, we engineered a transgenic mouse allowing for balanced Stat3β expression. Transgenic Stat3β expression resulted in decelerated disease progression and extended survival in PTEN- and MLL-AF9–dependent AML mouse models. Our findings further suggest that the antitumorigenic function of STAT3β depends on the tumor-intrinsic regulation of a small set of significantly up- and downregulated genes, identified via RNA sequencing. In conclusion, we demonstrate that STAT3β plays an essential tumor-suppressive role in AML.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3742
Author(s):  
Marlon Arnone ◽  
Martina Konantz ◽  
Pauline Hanns ◽  
Anna M. Paczulla Stanger ◽  
Sarah Bertels ◽  
...  

Patients suffering from acute myeloid leukemia (AML) show highly heterogeneous clinical outcomes. Next to variabilities in patient-specific parameters influencing treatment decisions and outcome, this is due to differences in AML biology. In fact, different genetic drivers may transform variable cells of origin and co-exist with additional genetic lesions (e.g., as observed in clonal hematopoiesis) in a variety of leukemic (sub)clones. Moreover, AML cells are hierarchically organized and contain subpopulations of more immature cells called leukemic stem cells (LSC), which on the cellular level constitute the driver of the disease and may evolve during therapy. This genetic and hierarchical complexity results in a pronounced phenotypic variability, which is observed among AML cells of different patients as well as among the leukemic blasts of individual patients, at diagnosis and during the course of the disease. Here, we review the current knowledge on the heterogeneous landscape of AML surface markers with particular focus on those identifying LSC, and discuss why identification and targeting of this important cellular subpopulation in AML remains challenging.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2896-2896
Author(s):  
Stefan Frohling ◽  
Richard F. Schlenk ◽  
Jurgen Krauter ◽  
Arnold Ganser ◽  
Christian Thiede ◽  
...  

Abstract The transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha) plays an important role in the development of mature neutrophils. Two common types of mutations in the CEBPA gene encoding C/EBPalpha have been identified in approximately 10% of adults with acute myeloid leukemia (AML): N-terminal, dominant-negative frameshift mutations that result in loss of C/EBPalpha function and C-terminal in-frame mutations that result in C/EBPalpha proteins with decreased DNA-binding potential. Previous studies concluded that mutant CEBPA predicts favorable outcome in younger AML patients with intermediate-risk karyotypes or normal cytogenetics. To assess the prevalence of CEBPA mutations in specific cytogenetic subgroups, mutational analysis of the CEBPA gene was performed in 125 AML patients. No CEBPA mutations were detected in 77 patients with t(8;21), inv(16)/t(16;16), t(15;17), or balanced translocations with breakpoints in band 11q23. In 58 patients with various non-complex karyotypic abnormalities, CEBPA mutations were present in 8 (14%). Surprisingly, 5 of the 8 patients with del(9q) as the sole aberration or in combination with a single additional abnormality other than t(8;21) had CEBPA mutations associated with loss of C/EBPalpha function. Consequently, 41 additional del(9q) cases were analyzed; 9 had CEBPA loss-of-function mutations. The overall prevalence of CEBPA loss-of-function mutations in cases with del(9q) within a non-complex karyotype was 41% (14 of 34 patients), whereas none of the patients who had a del(9q) within a complex karyotype (n = 7), in combination with a t(8;21) (n = 10), or together with a t(15;17) (n = 1) demonstrated mutant CEBPA. Analysis of associated mutations indicated that alterations of the FLT3, MLL, and NRAS genes are not common cooperating events in the pathogenesis of del(9q) AML with inactivating CEBPA mutations. This is the first study to show that AML with del(9q) is strongly associated with CEBPA loss-of-function mutations. The coincidence of del(9q) with inactivating CEBPA mutations and the fact that del(9q) is a common secondary cytogenetic abnormality in t(8;21)-positive AML, that is characterized by specific down-regulation of CEBPA, raise the possibility that loss of a critical segment of 9q, most likely in 9q22, and disruption of C/EBPalpha function cooperate in the pathogenesis of these leukemias. Further refinement of the commonly deleted segment of 9q using high-resolution techniques is underway to identify the critical gene(s) involved and their role in normal hematopoiesis and leukemogenesis. A collaborative intergroup study has been initiated to define whether the relatively good prognosis associated with del(9q) is related to the presence of a CEBPA mutation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2213-2213
Author(s):  
J. Pulikkan ◽  
A. Peer Zada ◽  
M. Geletu ◽  
V. Dengler ◽  
Daniel G. Tenen ◽  
...  

Abstract CCAAT enhancer binding protein alpha (C/EBPα) is a myeloid specific transcription factor that coordinates cellular differentiation and cell cycle arrest. Loss of C/EBPα expression or function in leukemic blasts contributes to a block in myeloid cell differentiation. C/EBPα is mutated in around 9% of acute myeloid leukemia (AML). The mutations reported in C/EBPα are frame shift mutations and point mutations at basic region Leucine zipper. The mutant form of C/EBPα ie C/EBPα-p30 exhibits dominant negative function over the wild type protein. The role of peptidyl-prolyl cis/trans isomerase, Pin1 in tumorogenesis and its overexpression in many cancers led us to investigate its role in acute myeloid leukemia with C/EBPα mutation. Here we show that Pin1 is upregulated in patients with acute myeloid leukemia by affymetrix analysis. By quantitative Real-Time RT-PCR analysis, we show C/EBPα-p30 could induce Pin1 transcription, while the wild type C/EBPα downregulates Pin1 expression. Luciferase promoter assay for the Pin1 promoter shows that wild type C/EBPα is able to block Pin1 promoter activity. Mean while, C/EBPα-p30 couldn’t block Pin1 promotor activity. By silencing Pin1 by RNA Interference as well as with inhibitor against Pin1 (PiB) we could show myeloid differentiation in human CD34+ cord blood cells as well as in Kasumi-6 cells as assessed by FACS analysis with granulocytic markers. We investigated the mechanism underlying the dominant negative action of C/EBPα-p30 over the wild type protein. We report that Pin1 increases the transcriptional activity of the oncogene c-jun. We also show that c-jun blocks the DNA binding and transactivation of C/EBPα protein as assessed by gel shift assay and promoter assay respectively. We have previously shown that c-jun expression is high in AML patients with C/EBPα mutation and c-jun could block C/EBPα function by protein-protein interaction. Quantitative Real-Time RT-PCR analysis shows that inhibition of Pin1 by the inhibitor PiB downregulates c-jun mRNA expression. In conclusion, inhibition of Pin1 leads to granulocytic differentiation. Our results show Pin1 as a novel target in treating AML patients with C/EBPα mutation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1283-1283 ◽  
Author(s):  
Maaike Luesink ◽  
Jeannet Nigten ◽  
Ruth H.J.N. Knops ◽  
Theo J.M. de Witte ◽  
Bert A. van der Reijden ◽  
...  

Abstract Abstract 1283 Poster Board I-305 Wilms' tumor 1 (WT1) and GATA binding protein 2 (GATA2) transcription factors are highly expressed in hematopoietic stem cells and progenitors. Differentiation of precursor blood cells towards mature blood cells is accompanied by rapid downregulation of both transcription factors. Overexpression of WT1 has been observed in the majority of acute myeloid leukemia (AML) cases. Furthermore, in 10-15% of the AML cases mutations in the WT1 gene occur, which have been correlated with poor prognosis. Aberrant expression of GATA2 in AML has been described as well, but no mutations in this gene have been reported in AML so far. How the (aberrant) expression of WT1 and GATA2 is controlled is not completely clear. A regulatory role for microRNAs (miRNAs) has been described for several transcription factors which regulate hematopoiesis. MiRNAs negatively regulate gene expression by translational repression or degradation of target messenger RNAs (mRNAs). In the present study we investigated the interplay between miRNAs and transcription factors that are involved in myeloid development and malignant transformation towards AML. We studied the expression of 158 miRNAs in the APL cell line NB4 during induction of granulocytic differentiation with all-trans retinoic acid (ATRA). Quantitative PCR specific for mature miRNAs was performed (Applied Biosystems). Twenty out of 158 miRNAs were more than 10-fold upregulated upon differentiation induction with ATRA. MiR-132 and miR212, which are derived from the same pri-miRNA transcript, were most strongly upregulated during ATRA-induced granulocytic differentiation (1200- and 350-fold respectively at 96 hours after ATRA-stimulation). In vitro ATRA-induction of primary APL cells also resulted in upregulation of miR-132 and miR-212. Computational target prediction algorithms were used to identify transcription factors which may be targeted by miR-132 and miR-212. Subsequently, the expression pattern of the predicted targets was determined experimentally in NB4 cells before and after differentiation induction with ATRA using microarray-based mRNA profiling (Affymetrix). In addition, further verification of target gene expression during ATRA-induced differentiation was performed using quantitative PCR. The transcription factors WT1 and GATA2 were predicted as targets of miR-132 and miR-212 by two out of four different prediction programs that were used. Both transcription factors contained putative binding sites for miR-132 and miR-212 in their 3'UTR. When tested on microarray and by quantitative PCR, the expression of WT1 and GATA2 was indeed strongly downregulated during ATRA-induced granulocytic differentiation of NB4 cells (65- and 165-fold respectively at 96 hours after ATRA stimulation) as well as in primary leukemia cells derived from APL patients (30- and 10-fold respectively at 48 hours after ATRA-stimulation). During ATRA-induced differentiation the expression levels of WT1 were positively correlated with the expression levels of GATA2. In addition, WT1 expression was also strongly correlated with GATA2 expression in a cohort of 27 pre-treatment AML cases as well as in 7 healthy controls, suggesting that these genes might be co-regulated to a large extent. To directly prove that WT1 and GATA2 are indeed targeted by miR-132 and miR-212, we are currently performing lentiviral-based overexpression studies of both miRNAs to determine the effect on endogenous WT1 and GATA2 mRNA expression. MicroRNAs which target WT1 and GATA2 may be valuable tools in controlling the aberrant expression of WT1 and GATA2 observed in AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3795-3795
Author(s):  
Lacramioara Botezatu ◽  
Judith Hönes ◽  
Amos Zeller ◽  
Lars C. Michel ◽  
Andre Görgens ◽  
...  

Abstract The proper differentiation of hematopoietic stem cells is regulated by a concert of different so called transcription factors. Growth Factor Independence 1b (Gfi1b) is a repressing transcription factor, which is pivotal for the proper emergence and maturation of erythrocytes and platelets. Furthermore, Gfi1b controls quiescence as well as cell cycle progression of hematopoietic stem cells and early progenitor cells. It has been shown for other transcription factors that a disturbed function of these transcription factors can be the basis of malignant diseases such acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). MDS is characterized by disturbed differentiation of one or several hematopoietic lineages. The accumulation of malignant blast cells, which are arrested in their development, is a key feature of AML. Since transcription factors play a role in AML development, we sought to investigate whether Gfi1b might also play a role in the development and progression of AML. Based on published gene expression arrays and own patient samples, we observed that Gfi1b is expressed at a lower level in leukemic blasts and leukemic stem cells compared to the non-malignant control cells. We correlated Gfi1b expression level in blast cells of patients from Essen and we found out that patients with high Gfi1b levels had a poor prognosis and an increased risk of relapse. In contrast low levels of Gfi1b expression were associated with a good prognosis. To test how different levels of Gfi1b might influence initiation of AML we have mouse strains available expressing Gfi1b at different expression levels. We have Gfi1b wt mice with one allele of Gfi1b deleted (Gfi1b het) and Gfi1b conditional mice, in which the expression of Gf1b (Mx Cre tg Gfi1b fl/fl) can be abrogated after injecting these mice with pIpC. To explore the role of Gfi1b in leukemia development, we used different murine AML models, resembling human leukemia. First these mice were crossed with Nup98HoxD13 transgenic mice, a mouse strain that develops a disease similar to the human MDS. We observed that Gfi1b heterozygosity (n=15) accelerated AML development (p=0,03) compared to wt mice (n=16). More importantly, complete absence of Gfi1b (n=8) results in a substantially earlier onset of AML, with a median survival time of about 50 days (p=0.002). To confirm our findings, we used a different murine AML model. Recurrent so called oncofusion proteins such as AML1-Eto9a, CBFbeta-Myh11 or MLL-AF9 are characteristic for certain subtypes of AML. We transduced Lineage negative (Lin-) bone marrow cells from wt, Gfi1b heterozygous (Gfi1b het) and Gfi1b deficient (MxCre Gfi1b fl/fl) mice with retroviruses encoding either AML1-Eto9a or MLL-AF9 oncofusion -proteins. Transduced Gfi1b heterozygous or Gfi1b deficient cells generated more colonies and higher cell number than wt transduced cells. We also used mice transgenically expressing CBFbeta-Myh11. Deletion of Gfi1b accelerated leukemia formation in these mice compared to mice in which Gfi1b was still expressed. On a molecular level, we found that loss of Gfi1b leads to increased levels of ROS level. It has been shown by other groups, that increased levels of Gfi1b contribute to leukemia development. In addition, Gfi1b represses the expression of Integrin beta 3 (ITGB3). Absence of Gfi1b leads to higher expression level of ITGB3. ITGB3 has been shown to promote growth and expansion of leukemic stem cells, which play an important role in AML development. Thus we report here that Gfi1b acts as a novel tumor suppressor in AML development. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document