scholarly journals Impact Strength of Hybrid Epoxy–Basalt Composites Modified with Mineral and Natural Fillers

2021 ◽  
Vol 5 (3) ◽  
pp. 56
Author(s):  
Danuta Matykiewicz ◽  
Mateusz Barczewski ◽  
Marwan Suleiman Mousa ◽  
Mavinkere Rangappa Sanjay ◽  
Suchart Siengchin

The aim of this study was to evaluate the influence of mineral and natural additives (2.5; 5; 10 wt.%) on the impact strength of epoxy–basalt composites. Three types of filler were used to modify the epoxy matrix: basalt powder (BP), basalt microfiber (BF) and sunflower husk ash (SA). The impact strength and the maximum force were determined for the materials. The results of the conducted research confirm that the addition of a powder fillers to the epoxy matrix of basalt fiber reinforced composites is an effective method of improving their impact characteristic. The introduction of fillers to epoxy resin allowed to improve the impact properties of all tested groups of laminates. Moreover, in all cases, the introduction of the filler increased the maximum force needed to damage the composite sample and their hardness. For the modified materials, an increase in impact strength was recorded, respectively: by 44% for composites with BP, by 7.5% for composites with BF and by 2.5% for composites with SA.

2021 ◽  
Vol 8 (12) ◽  
pp. 125302
Author(s):  
N Prasanaa Iyer ◽  
N Arunkumar

Abstract The main aim of this work is to study thedamage tolerance of hybrid basalt and carbon fiber-reinforced composite subjected to low velocity impact (LVI) at different velocities, 2.89 m s−1 and 4.42 m s−1, simulated using a CEAST drop hammer testing machine and Dynamic Mechanical Analysis(DMA) were conducted to characterize the sample. In this article, the detailed failure mechanism of seven composite laminates (Basalt fiber/Bismaleimide(BMI)-diallyl Bisphenol A(DABA), Carbon fiber/BMI-DABA, Carbon and basalt fiber(hybrid fibers)/BMI-DABA) were studied under loading of LVI. Through the experiment, it was also substantiated that the hybrid fiber-reinforced composites possessed better damage tolerance and thermo mechanical properties than the homogenous fiber-reinforced composites. The hybrid fiber composites that were produced vary in the number of carbon fiber to basalt fiber ratio and stacking sequence. The impacted surface was analyzed at macro level by using Image J software. The impact force, the energy absorbed, and the deformation of the laminates under impact load were scrutinized extensively, and it was inferred that the basalt fiber intercalated with carbon fiber with BMI/DABA possessed the highest damage resistance than the other composite laminates under study. The highest peak force 5702 N and 9241 N with the highest elastic energy 4.8 J, 11.7 J and with lower deformation (3.85 mm, 6.09 mm) and deformation area (22.79 mm2, 28.09 mm2) was observed in the intercalated hybrid laminate.


2015 ◽  
Vol 773-774 ◽  
pp. 48-52
Author(s):  
Al Emran Ismail

This present work investigated the perforated impact strength of woven kenaf fiber reinforced composites subjected to different projectile velocities. Three layers of woven kenaf mats were stacked with four different fiber orientations 0, 15, 30 and 450. The composites are fabricated using hand-layout where the woven mats were placed into the mould with a polymeric resin. The wetted composites were compressed to squeeze out the excessive resin and to eliminate the void contents. The hardened samples were shaped into a standard geometry specified by ASTM D3763. Then, the composites were perforated impact using different speeds 1, 2 and 3 m/s. According to the present results, it was found that the perforated impact strength reduced when the impact velocity was increased. However, the impact strength of 150 oriented composite was higher when compared with other types of composites.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540004
Author(s):  
Yun-Hae Kim ◽  
Jin-Woo Lee ◽  
Kyung-Man Moon ◽  
Sung-Won Yoon ◽  
Tae-Sil Baek ◽  
...  

Composites are vulnerable to the impact damage by the collision as to the thickness direction, because composites are being manufactured by laminating the fiber. The understanding about the retained strength after the impact damage of the material is essential in order to secure the reliability of the structure design using the composites. In this paper, we have tried to evaluate the motion of the material according to the kinetic energy and potential energy and the retained strength after impact damage by testing the free fall test of the basalt fiber reinforced composite in the limelight as the environment friendly characteristic.


2015 ◽  
Vol 773-774 ◽  
pp. 43-47
Author(s):  
Al Emran Ismail ◽  
Muhammad Aiman Hasan ◽  
K.A. Kamaruddin

This present work investigated the perforated impact strength of woven kenaf fiber reinforced composites subjected to different projectile velocities. Three layers of woven kenaf mats were stacked with four different fiber orientations 0, 15, 30 and 450. The composites are fabricated using hand-layout where the woven mats were placed into the mould with a polymeric resin. The wetted composites were compressed to squeeze out the excessive resin and to eliminate the void contents. The hardened samples were shaped into a standard geometry specified by ASTM D3763. Then, the composites were perforated impact using different speeds 1, 2 and 3 m/s. According to the present results, it was found that the perforated impact strength reduced when the impact velocity was increased. However, the impact strength of 150 oriented composite was higher when compared with other types of composites.


Author(s):  
Khan Asem Ali

Abstract: The world that is evolving at a very fast pace, the anxiety of the environment pollutions increasing has tip the necessity for new eco-friendly materials, researchers have started to develop sustainable materials that are renewable as well as biodegradable in nature. The natural fibers have certain advantages above synthetic fiber materials, they are lower in cost and density with comparable strength. In the present study, banana fiber is reinforced in the epoxy matrix and a composite material is prepared and impact strength of these composites are estimated. This composite samples are prepared by Wet lay-up method with varying banana fibers volume percentages by (10%, 20%, 30%, 40%) and by changing the fibers orientation in the epoxy matrix by (00 ,900 , woven Bi-directional). The results shows that there is gradual increase in the impact strength of the epoxy for 900 banana fiber orientation, the optimum results were found for 40% banana fiber and 60% epoxy resin, as for woven BD there was an increase in the impact strength up to 20% banana fiber reinforcement, as for 00 orientation the strength increases up to 10% fiber reinforcement above this there was a drastic reduction in the impact strength. Keywords: Banana Fiber, Epoxy Resin, Volume percent, Fiber Orientation, Impact Strength


2012 ◽  
Vol 510-511 ◽  
pp. 577-584 ◽  
Author(s):  
A. Quddos ◽  
Mohammad Bilal Khan ◽  
R.N. Khan ◽  
M.K.K. Ghauri

The impregnation of the fiber with a resin system, the polymeric matrix with the interface needs to be properly cured so that the dimensional stability of the matrix and the composite is ensured. A modified epoxy resin matrix was obtained with a reactive toughening agent and anhydride as a curing agent. The mechanical properties of the modified epoxy matrix and its fiber reinforced composites were investigated systematically. The polymeric matrix possessed many good properties, including high strength, high elongation at break, low viscosity, long pot life at room temperature, and good water resistance. The special attentions are given to the matrix due to its low out gassing, low water absorption and radiation resistance. In addition, the fiber-reinforced composites showed a high strength conversion ratio of the fiber and good fatigue resistance. The dynamic and static of the composite material were studied by thermo gravimetric analysis (TGA), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) with EDX. The influences of processing technique such as curing and proper mixing on the mechanical and interfacial properties were determined. The results demonstrated that the modified epoxy resin matrix is very suitable for applications in products fabricated with fiber-reinforced composites.


2016 ◽  
Vol 51 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
Wei Li ◽  
Hongyu Li ◽  
Xinguo Yang ◽  
Wei Feng ◽  
Hongyun Huang

This paper reported a facile one-pot strategy for fabrication of sulfonic graphene oxide–epoxy resin nanocomposites. The rheological and thermal properties were employed to characterize the viscosity and the curing temperature of epoxy resin. Fourier transform infrared spectra for sulfonic graphene oxide and nanocomposites indicated that the sulfonic graphene oxide contains chemical cross-linking responsible for better interactions with the epoxy resin. The state of dispersion was evaluated at different scales by still picture camera and scanning electron microscopy (SEM). Tensile property tests indicated that the tensile strength and elasticity modulus of sulfonic graphene oxide–epoxy resin nanocomposites decreased slowly with increasing of sulfonic graphene oxide content. The critical flexural property and impact strength of epoxy resin filled with sulfonic graphene oxide nanocomposites were measured. The content, size, and dispersion state of sulfonic graphene oxide were examined. It was found that the content of sulfonic graphene oxide has greater impact on both flexural property and impact strength of nanocomposites compared with other conditions. For instance, the impact strength increased by 113.0% and the flexural strength and modulus increased by 39.3% and 55.7% using 1 wt.% sulfonic graphene oxide as compared to neat epoxy resin.


2009 ◽  
Vol 79-82 ◽  
pp. 553-556 ◽  
Author(s):  
Ling Fei Shi ◽  
Gang Li ◽  
Gang Sui ◽  
Xiao Ping Yang

The increasing proliferation and application of advanced polymer composites requires higher and broader performance resin matrices. Poly(oxypropylene) with –NH2 end-groups has been widely used to toughen epoxy resins, but the strength of resin matrix may be reduced due to the addition of flexible segments in the crosslinking network. Carbon nanotubes (CNTs) have been paid more and more attention in recent years because of their superior thermal and mechanical properties. In this paper, CNTs grafted with Jeffamines T403 were used to simultaneously improve the reinforcement and toughening of an epoxy resin. The untreated multi-walled carbon nanotubes (u-MWNTs) were functionalized with amine groups according to three steps: carboxylation, acylation, and amidation. The f-MWNTs were characterized by Fourier transform infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that the T403 was grafted to the surface of MWCNTs. The mechanical and thermal properties of epoxy with f-MWNTs were investigated. The tensile and flexural strength increased by 7.77 % and 7.03 % after adding 0.5wt% f-MWCNTs without sacrificing the impact toughness. At the same time, dynamic mechanical thermal analysis (DMTA) showed that the glass transition temperature (Tg) of epoxy with f-MWNTs were increased. The fracture surface of epoxy with f-MWNTs was observed by scanning electron microscopy (SEM) to understand the dispersion of f-MWNTs in epoxy matrix and interfacial adhesion between f-MWNTs and epoxy matrix, which can be attributed to the strong interfacial bonding between f-MWNTs and epoxy resin.


Sign in / Sign up

Export Citation Format

Share Document