scholarly journals Emerging Links between Microbiome Composition and Skin Immunology in Diaper Dermatitis: A Narrative Review

Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 112
Author(s):  
Tjaša Hertiš Petek ◽  
Maya Petek ◽  
Tadej Petek ◽  
Nataša Marčun Varda

Diaper dermatitis is a common type of irritant contact dermatitis occurring in infants and toddlers. Its occurrence is triggered by an unfavorable environment under the diaper, damage to skin integrity by fecal enzyme degradation, overhydration and disruption of the lipid bilayer structure facilitating the entry of irritants and microorganisms. In diaper dermatitis development, the central proinflammatory cytokines are IL-1α, IL-8 and TNF-α. The initial release of IL-1α and TNF-α starts a further cascade of pro-inflammatory chemo- and cytokines, resulting in inflammation and erythema of the skin. A recently recognized factor in diaper dermatitis is the composition of the skin microbiome; common pathogenic strains Candida albicans and Staphylococcus aureus are associated with skin irritation. The resulting impaired microbiome composition produces a local inflammatory response and may thus worsen the initial dermatitis clinical presentation and subsequent healing. Introduction of probiotics is an attractive treatment for microbiome modulation, which has shown success in other skin conditions in adults and children. Probiotics are thought to work as a protective shield against irritants, maintain low skin pH, secrete beneficial metabolites, and block pathogen invasion. There is preliminary evidence that certain probiotics given orally or topically could be used as a gentle intervention in diaper dermatitis.

2017 ◽  
Vol 284 (1857) ◽  
pp. 20170944 ◽  
Author(s):  
Andrea J. Jani ◽  
Roland A. Knapp ◽  
Cheryl J. Briggs

Infectious diseases have serious impacts on human and wildlife populations, but the effects of a disease can vary, even among individuals or populations of the same host species. Identifying the reasons for this variation is key to understanding disease dynamics and mitigating infectious disease impacts, but disentangling cause and correlation during natural outbreaks is extremely challenging. This study aims to understand associations between symbiotic bacterial communities and an infectious disease, and examines multiple host populations before or after pathogen invasion to infer likely causal links. The results show that symbiotic bacteria are linked to fundamentally different outcomes of pathogen infection: host–pathogen coexistence (endemic infection) or host population extirpation (epidemic infection). Diversity and composition of skin-associated bacteria differed between populations of the frog, Rana sierrae , that coexist with or were extirpated by the fungal pathogen, Batrachochytrium dendrobatidis (Bd). Data from multiple populations sampled before or after pathogen invasion were used to infer cause and effect in the relationship between the fungal pathogen and symbiotic bacteria. Among host populations, variation in the composition of the skin microbiome was most strongly predicted by pathogen infection severity, even in analyses where the outcome of infection did not vary. This result suggests that pathogen infection shapes variation in the skin microbiome across host populations that coexist with or are driven to extirpation by the pathogen. By contrast, microbiome richness was largely unaffected by pathogen infection intensity, but was strongly predicted by geographical region of the host population, indicating the importance of environmental or host genetic factors in shaping microbiome richness. Thus, while both richness and composition of the microbiome differed between endemic and epidemic host populations, the underlying causes are most likely different: pathogen infection appears to shape microbiome composition, while microbiome richness was less sensitive to pathogen-induced disturbance. Because higher richness was correlated with host persistence in the presence of Bd, and richness appeared relatively stable to Bd infection, microbiome richness may contribute to disease resistance, although the latter remains to be directly tested.


2001 ◽  
Vol 69 (12) ◽  
pp. 7277-7284 ◽  
Author(s):  
Xiang Zhang ◽  
Marja Rimpiläinen ◽  
Egle Šimelyte ◽  
Paavo Toivanen

ABSTRACT Two almost-identical strains of Eubacterium aerofaciens isolated from the normal human gut flora were used. The cell wall (CW) of one strain with a peptidoglycan (PG) type A4α induces chronic arthritis in the rat after a single intraperitoneal injection, whereas CW of the other with PG type A4β induces only a transient acute arthritis. The CW of the arthritogenic E. aerofaciens was a twofold-more-potent stimulator of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1) than the nonarthritogenic CW. After degradation with mutanolysin, the capacity of the arthritogenic PG to stimulate production of TNF-α and MCP-1 was significantly increased, whereas that of the nonarthritogenic PG was significantly decreased. In other words, after enzyme degradation the arthritogenic PG had a four- to fivefold-stronger stimulatory capacity than that of the enzyme-treated nonarthritogenic PG. These findings indicate that the arthritogenicity of CW or a PG is not dependent on the enzyme resistance alone but also on how the PG fragments released by enzyme degradation stimulate the production of proinflammatory cytokines.


2017 ◽  
Vol 137 (5) ◽  
pp. S102
Author(s):  
H. Ahmed ◽  
C. Morrow ◽  
N. Yusuf ◽  
H.W. Lim ◽  
I. Hamzavi ◽  
...  

2002 ◽  
Vol 23 (1) ◽  
pp. 90-119 ◽  
Author(s):  
Johannes Pfeilschifter ◽  
Roland Köditz ◽  
Martin Pfohl ◽  
Helmut Schatz

Abstract There is now a large body of evidence suggesting that the decline in ovarian function with menopause is associated with spontaneous increases in proinflammatory cytokines. The cytokines that have obtained the most attention are IL-1, IL-6, and TNF-α. The exact mechanisms by which estrogen interferes with cytokine activity are still incompletely known but may potentially include interactions of the ER with other transcription factors, modulation of nitric oxide activity, antioxidative effects, plasma membrane actions, and changes in immune cell function. Experimental and clinical studies strongly support a link between the increased state of proinflammatory cytokine activity and postmenopausal bone loss. Preliminary evidence suggests that these changes also might be relevant to vascular homeostasis and the development of atherosclerosis. Better knowledge of the mechanisms and the time course of these interactions may open new avenues for the prevention and treatment of some of the most prevalent and important disorders in postmenopausal women.


2021 ◽  
Vol 28 (4) ◽  
pp. 249-261
Author(s):  
Stella Vania ◽  
Amarila Malik

Skin serves as the first physical barrier and biological barrier by the colonization of commensal bacteria to prevent pathogen invasion. It was known that the disruption on normal commensal microbiota composition or dysbiosis causes skin diseases, while the skin microbiota diversity itself is influenced by several factors, one of them is ethnicity. This study shows the influence of ethnicity factor in Papuans, Javanese, and Chinese descent young adults living in Jakarta on skin microbiome profiles. The microbiota genomic DNA are extracted from the face skin samples and sequenced with Next Generation Sequencing method to be further analyzed. The result shows that individuals with the same ethnic background share similar skin microbiome characteristics. The greatest skin microbiome alpha diversity is shown by the Papuans and the Chinese descent the smallest. Ethnicity factor that shows statistically significant differences in interindividual dissimilarities are independent of other intriguing factors such as age, geographical location, etc. Therefore the ethnic origin of individuals especially from three ethnics above is a factor to be considered in skin microbiome research and the skin microbiota composition can be used for potential future applications.


2019 ◽  
Author(s):  
Meghan Ange-Stark ◽  
Tina L. Cheng ◽  
Joseph R. Hoyt ◽  
Kate E. Langwig ◽  
Katy L. Parise ◽  
...  

AbstractThe skin microbiome is an essential line of host defense against pathogens, yet our understanding of microbial communities and how they change when hosts become infected is limited. We investigated skin microbial composition in three North American bat species (Myotis lucifugus,Eptesicus fuscus, andPerimyotis subflavus) that have been impacted by the infectious disease, white-nose syndrome, caused by an invasive fungal pathogen,Pseudogymnoascus destructans. We compared bacterial and fungal composition from 154 skin swab samples and 70 environmental samples using a targeted 16S rRNA and ITS amplicon approach. We found that forM. lucifugus, a species that experiences high mortality from white-nose syndrome, bacterial microbiome diversity was dramatically lower whenP. destructansis present. Key bacterial families—including those potentially involved in pathogen defense—significantly differed in abundance in bats infected withP. destructanscompared to uninfected bats. However, skin bacterial diversity was not lower inE. fuscusorP. subflavuswhenP. destructanswas present, despite populations of the latter species declining sharply from white-nose syndrome. The fungal species present on bats substantially overlapped with the fungal taxa present in the environment at the site where the bat was sampled, but fungal community composition was unaffected by the presence ofP. destructansfor any of the three bat species. This species-specific alteration in bat skin bacterial microbiomes after pathogen invasion may suggest a mechanism for the severity of WNS inM. lucifugus, but not for other bat species impacted by white-nose syndrome.


2021 ◽  
Author(s):  
Fardou H. Heida ◽  
Elisabeth M. W. Kooi ◽  
Josef Wagner ◽  
Thi-Yen Nguyen ◽  
Jan B. F. Hulscher ◽  
...  

Abstract Background: The intestinal microbiome in preterm infants differs markedly from term infants. It is unclear whether the microbiome develops over time according to infant specific factors. Methods: We analysed (clinical) metadata - to identify the main factors influencing the microbiome composition development - and the first meconium and feacal samples til the 4th week via 16S rRNA amplican sequencing. Results: We included 41 infants (gestational age 25-30 weeks; birth weight 430-990g. Birth via Caesarean section (CS) was associated with placental insufficiency during pregnancy and lower BW. In meconium and in weeks 2 and 3 an increased combined abundance of Escherichia and Bacteroides (maternal fecal representatives) was associated with vaginal delivery (p=0.021, p=0.0002, p=0.028, respectively) while Staphylococcus (skin microbiome representative) was associated with CS (p=0.0008, p=0.0003 p=0.046, respectively). Secondly, irrespective of the week of sampling or the mode of birth, a transition was observed as children children gradually increased in weight from a microbiome dominated by Staphylococcus (Bacilli) towards a microbiome dominated by Enterobacteriaceae (Gammaproteobacteria). Conclusions: Mode of delivery affects the meconium microbiome composition. It also suggests that the weight of the infant at the time of sampling is a better predictor for the stage of progression of the intestinal microbiome development/maturation than postconceptional age.


2019 ◽  
Author(s):  
C Pepe-Ranney ◽  
C Keyser ◽  
J Trimble ◽  
B Bissinger

AbstractFarmers grow sweetpotatoes worldwide and some sub-Saharan African and Asian diets include sweetpotato as a staple, yet the sweetpotato microbiome is conspicuously less studied relative to crops such as maize, soybean, and wheat. Studying sweetpotato microbiome ecology may reveal paths to engineer the microbiome to improve sweetpotato yield, and/or combat sweetpotato pests and diseases. We sampled sweetpotatoes and surrounding soil from two North Carolina farms. We took samples from sweetpotato fields under two different land management regimes, conventional and organic, and collected two sweetpotato cultivars, ‘Beauregard’ and ‘Covington’. By comparing SSU rRNA gene amplicon sequence profiles from sweetpotato storage root skin, rhizosphere, and surrounding soil we found the skin microbiome possessed the least composition heterogeneity among samples and lowest alpha-diversity and was significantly nested by the rhizosphere in amplicon sequence variant (ASV) membership. Many ASVs were specific to a single field and/or only found in either the skin, rhizosphere, or surrounding soil. Notably, sweetpotato skin enriched for Planctomycetaceae in relative abundance at both farms. This study elucidates underpinnings of sweetpotato microbiome community assembly, quantifies microbiome composition variance within a single farm, and reveals microorganisms associated with sweetpotato skin that belong to common but uncultured soil phylotypes.


2019 ◽  
Author(s):  
Roo Vandegrift ◽  
Ashkaan K. Fahimipour ◽  
Mario Muscarella ◽  
Ashley C. Bateman ◽  
Kevin Van Den Wymelenberg ◽  
...  

AbstractThe human skin microbiome interacts intimately with human health, yet the drivers of skin microbiome composition and diversity are not well-understood. The composition of the skin microbiome has been characterized as both highly variable and relatively stable, depending on the time scale under consideration, and it is not clear what role contact with environmental sources of microbes plays in this variability. We experimentally mimicked human skin contact with two common environmental sources of microorganisms — soils and plant leaves — and characterized the dynamics of microbial acquisition and persistence on skin on very short time scales. Repeatable changes in skin community composition following encounters with environmental sources were observed, and these trajectories largely depend on donor community biomass distributions. Changes in composition persisted for at least 24 hours and through a soap and water wash following exposures to relatively high biomass soil communities. In contrast, exposures to lower biomass leaf communities were undetectable after a 24 hour period. Absolute abundances of bacterial taxa in source communities predicted transmission probabilities and residence times, independent of phylogenetic considerations. Our results suggest that variability in the composition of the skin microbiome can be driven by transient encounters with common environmental sources, and that these relatively transient effects can persist when the source is of sufficient biomass.ImportanceHumans come into contact with environmental sources of microbes, such as soil or plants, constantly. Those microbial exposures have been linked to health through training and modulation of the immune system. While much is known about the human skin microbiome, the short term dynamics after a contact event, such as touching soil, have not been well characterized. In this study, we examine what happens after such a contact event, describing trends in microbial transmission to and persistence on the skin. Additionally, we use computational sampling model simulations to interrogate null expectations for these kinds of experiments. This work has broad implications for infection control strategies and therapeutic techniques that rely on modification of the microbiome, such as probiotics and faecal transplantation.


Sign in / Sign up

Export Citation Format

Share Document