scholarly journals Hybrid Hydrogen–PV–e-Mobility Industrial Energy Community Concept—A Technology Feasibility Study

2021 ◽  
Vol 3 (4) ◽  
pp. 670-684
Author(s):  
Istvan Vokony

As renewable energy sources are spreading, the problems of energy usage, transport and storage arise more frequently. In order that the performance of energy producing units from renewable sources, which have a relatively low efficiency, should not be decreased further, and to promote sustainable energy consumption solutions, a living lab conception was elaborated in this project. At the pilot site, the produced energy (by PV panels, gas turbines/engines) is stored in numerous ways, including hydrogen production. The following uses of hydrogen are explored: (i) feeding it into the national natural gas network; (ii) selling it at a H-CNG (compressed natural gas) filling station; (iii) using it in fuel cells to produce electricity. This article introduces the overall implementation plan, which can serve as a model for the hybrid energy communities to be established in the future.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7680
Author(s):  
Yifei Lu ◽  
Thiemo Pesch ◽  
Andrea Benigni

Due to the increasing share of renewable energy sources in the electrical network, the focus on decarbonization has extended into other energy sectors. The gas sector is of special interest because it can offer seasonal storage capacity and additional flexibility to the electricity sector. In this paper, we present a new simulation method designed for hydrogen-enriched natural gas network simulation. It can handle different gas compositions and is thus able to accurately analyze the impact of hydrogen injections into natural gas pipelines. After describing the newly defined simulation method, we demonstrate how the simulation tool can be used to analyze a hydrogen-enriched gas pipeline network. An exemplary co-simulation of coupled power and gas networks shows that hydrogen injections are severely constrained by the gas pipeline network, highlighting the importance and necessity of considering different gas compositions in the simulation.


2022 ◽  
Vol 354 ◽  
pp. 00047
Author(s):  
Iulian Vladuca ◽  
Emilia Georgiana Prisăcariu ◽  
Cosmin Petru Suciu ◽  
Cristian Dobromirescu ◽  
Răzvan Edmond Nicoară

The oil free compressors were specially designed for air compression. The National Research and Development Institute for Gas Turbines COMOTI gained a great deal of experience in producing/designing certified oil injection screw compressors for the natural gas field and for several years it has been focusing its research on the use of “dry” (oil-free) compressors in natural gas compression and more recently in hydrogen compression. Working with an explosive gas, one of an idea was to use a nitrogen barrier in oil bearing sealing, which are open source of gases in the atmosphere for such compressors. Worldwide, on-site nitrogen generators have been developed for a purity range of 95…99.5%, and that nitrogen can be supplied in any environment conditions. The present paper will address nitrogen flow with low percentage of oxygen for bearing sealing at the working pressure, the nitrogen consumption, ideas for H2 re-injection and the influence over the global efficiency of the process. Due to the Energy Strategy worldwide, and the studies regarding production, transport and storage of hydrogen in natural gas network, COMOTI has involved researches in developing such possibilities and to express a point of view in existing research in the newly created industry.


Author(s):  
Max H. Baumgärtner ◽  
Thomas Sattelmayer

The increasing amount of volatile renewable energy sources drives the necessity of flexible conventional power plants to compensate for fluctuations of the power supply. Gas turbines in a combined cycle power plant (CCPP) adjust the power output quickly but a sudden increase of CO and UHC emissions limit their turn-down ratio. To extend the turn-down ratio, part of the fuel can be processed to syngas, which exerts a higher reactivity. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas and syngas mixtures are presented in this study. A mixture of natural gas, water vapor and air reacts catalytically in an autothermal reactor test rig to form syngas. At atmospheric pressure, the fuel processor generates syngas with a hydrogen content of ∼30 vol% and a temperature of 800 K within a residence time of 200 ms. One concept for the combustion of natural gas and syngas mixtures comprises a generic swirl stage with a central lance injector for the syngas. The second concept includes a central swirl stage with an outer ring of jets. The combustion is analyzed for both concepts by OH*-chemiluminescence, lean blow out (LBO) limit and gaseous emissions. The central lance concept with syngas injection exhibits an LBO adiabatic flame temperature that is 150 K lower than in premixed natural gas operation. For the second concept an extension of almost 200 K with low CO emission levels can be reached. This study shows that autothermal on-board syngas generation is feasible and efficient in terms of turn-down ratio extension and CO burn-out.


2021 ◽  
Vol 58 (3) ◽  
pp. 214-226 ◽  
Author(s):  
J. Kleperis ◽  
D. Boss ◽  
A. Mezulis ◽  
L. Zemite ◽  
P. Lesnicenoks ◽  
...  

Abstract As EU is steadily moving in the direction of emission reduction, each country must develop plans to decarbonise the transport and energy sectors. In Latvia, transport sector is one of the biggest emission sources. The heating applications come next. Both require carbon containing fuels and a transfer to carbon neutral fuel is necessary; therefore, hydrogen may be the answer to achieve the overall EU targets. As Latvia has renewable energy sources, some production, storage and use of hydrogen are possible. Currently clear guidelines for Latvia have been investigated. The existing natural gas network may be used for two tasks: large-scale hydrogen transportation and decarbonisation of natural gas network. To open the natural gas networks for hydrogen, the first evaluations are made and a possible scenario for hydrogen implementation in network supplying consumers in the household sector is analysed to evaluate decarbonisation with an overarching goal of carbon neutrality.


2020 ◽  
Author(s):  
Piotr Szewczyk ◽  
Jacek Jaworski

One of the ways to use electrical energy obtained from renewable energy sources is hydrogen production, which produces only energy and water vapour when burned. Adding hydrogen to natural gas and burning it will lower carbon dioxide emission, making this fuel more eco-friendly. Hydrogen added to natural gas can be transported using gas transmission pipelines and can then be provided to industrial and individual consumers via a distribution pipeline network. Due to the much lower density of hydrogen compared to natural gas, it is especially important to maintain the tightness of mechanical connections of network elements and gas installations. This publication presents the results of research carried out at the Oil and Gas Institute-National Research Institute on the influence that adding hydrogen to natural gas has on the tightness of connections of selected elements of gas installations and networks. According to the developed methodology, tests were performed on selected elements of gas networks and gas installations, in which joints were made using differing methods and using various sealing materials. In the case of steel pipes used in gas installations in buildings, joined by means of threaded connections with tightness obtained on the thread, the test samples were prepared with the use of linen hemp with sealing paste, Teflon tapes and threads, and anaerobic adhesives. Samples made of copper pipes were joined with press fittings. Other installation elements - such as flexible hoses, both extensible and non-extensible, and metal hose assemblies - were attached by means of threaded connections with tightness obtained beyond the thread; the sealing material was NBR rubber gaskets and klingerite. The gas network elements were connected by means of threaded connections with hemp and sealing paste, flare fittings, and steel and polyethylene flanges (sealing with a flat gasket made of NBR and klingerite). PE/Steel connectors where also tested. The tests included tightness tests of the prepared samples with the use of methane, and then a mix of 85% methane and 15% hydrogen. The tests on samples with simulated leaks were also performed. Based on the tests and the analysis of the results, it was found that adding the hydrogen to the methane did not cause leaks in the joined elements. In addition, it was found that in the case of leaks appearing in elements of installations or gas networks, the methane-hydrogen mixture flows out faster than methane alone, and in closed rooms this may result in the lower explosion limit being reached in a shorter time.


Author(s):  
M Moliere

Gas turbines are continuous-flow engines that develop steady aerodynamics and flame kinetics. These features reduce the constraints placed on fuel properties for combustion and provide a considerable margin for clean combustion. In particular, heavy-duty gas turbines can operate on a large number of primary fuels that are available in many branches of the industry. These accessible fuels include natural gas (NG) and diesel fuel (DF), as well as a number of industry byproducts generated by the refining and petrochemical sectors, coal and oil and gas activities, steel and mining branches, and by the agricultural industry (biofuels). This fuel flexibility enhances the existing qualities demonstrated by gas turbines, such as efficiency, reliability, versatility in applications [mechanical drive, simple and combined cycle, combined heat and power (CHP)], strong integration potential [integrated gasification combined cycle (IGCC), gas to liquid (GTL)], and low emissions. As a result, gas turbines that use local fuel resources, synfuels or industrial byproducts — and are deployed in simple or combined cycles or in CHP units — can play a prominent role in the creation of reliable, clean, and energy-efficient power systems. This article provides the energy community with comprehensive information about alternative gas turbine (GT) fuels, covering volatile fuels [naphtha, natural gas liquid (NGL), condensates], weak gas fuels from the coal/iron industry [coalbed gas, coke oven gas (COG), blast furnace gas (BFG)], ash-forming oils, and hydrogen-rich byproducts from refineries or petrochemical plants. The main technical considerations essential to the success of alternative fuel applications are reviewed and key experience milestones are highlighted. A special emphasis is placed on the combustion of hydrogen in gas turbines.


Author(s):  
Fred Hernandez ◽  
Hany Rizkalla

Abstract As renewable energy sources continue their global energy market penetration, new natural gas fired power plant installations have decreased significantly. The reduction in new installed capacity has increased pressure on operators to profitably maintain and expand their existing fleet capability. Retrofitting existing gas turbines to increase baseload power output, expand fuel flexibility and provide a wider operating load range are key natural gas fired power plant market demands. The FlameSheet™ combustor system addresses these considerations with a novel “dual-zone burn system” design that reduces emissions, increases fuel flexibility and reduces pressure losses to improve thermal cycle efficiency. The present work presents the results of FlameSheet™ installations into GE 7F.03 heavy duty gas turbines at two commercial sites. The first installation combined FlameSheet™ with PSM’s Gas Turbine Optimization Package (GTOP) to provide higher output through a combination of lower combustor pressure drop, higher mass flows and an increase in firing temperature, while maintaining sub-9ppm NOx emissions across the expanded operating range. Results are also presented for a second site on a unit that operates with up to 5% hydrogen blend into the baseline natural gas, where a reduction in NOx to sub-4 ppm levels at a typical 7F.03 baseload point has been safely and reliably achieved. Both results continue to demonstrate that fuel flexibility and expanded operational windows are possible to “future proof” existing gas turbine installations at a fraction of the cost of a new unit installation.


2020 ◽  
Author(s):  
Gabriel Nascimento ◽  
Osvaldo R. Saavedra ◽  
Sandoval A. Feitosa ◽  
Gilson S. da Silva Junior

The increasing penetration of renewable energy sources in Brazil’s north and northeast regions indicates economic development, employment generation and income, as well as several other environmental externalities. However, in terms of electric system operations, this situation raises concerns, mainly due to the entry of new wind farms and of the incipient but growing portion of photovoltaic solar generation. In this paper, we discuss the use of natural gas to provide greater flexibility and resilience to the electric system and thus mitigate the impact of the great variability of generation in the region where they preferentially occur. Gas turbines are characterized by rapid response ramps to generation-load changes, and can be used in the gas-to-power success model.


Author(s):  
Kwabena Addo Pambour ◽  
Rostand Tresor Sopgwi ◽  
Bri-Mathias Hodge ◽  
Carlo Brancucci

The operation of electricity and natural gas transmission networks in the U.S. are increasingly interdependent, due to the growing number of installations of gas fired generators and the penetration of renewable energy sources. This development suggests the need for closer communication and coordination between gas and power transmission system operators in order to improve the efficiency and reliability of the combined energy system. In this paper, we present a co-simulation platform for examining the interdependence between natural gas and electricity transmission networks based on a direct current unit-commitment and economic dispatch model for the power system and a transient hydraulic gas model for the gas system. We analyze the value of day-ahead coordination of power and natural gas network operations and show the importance of considering gas system constraints when analyzing power systems operation with high penetration of gas generators and renewable energy sources. Results show that day-ahead coordination contributes to a reduction in curtailed gas during high stress periods (e.g., large gas offtake ramps) and a reduction in energy consumption of gas compressor stations.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


Sign in / Sign up

Export Citation Format

Share Document