scholarly journals Lorenz Atmospheric Energy Cycle in Climatic Projections

Climate ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 180
Author(s):  
Silas Michaelides

The aim of this study is to investigate whether different Representative Concentration Pathways (RCPs), as they are determined in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), lead to different regimes in the energetics components of the Lorenz energy cycle. The four energy forms on which this investigation is based are the zonal and eddy components of the available potential and kinetic energies. The corresponding transformations between these forms of energy are also studied. RCPs are time-dependent, consistent scenarios of concentrations of radiatively active gases and particles. In the present study, four RCPs are explored, namely, rcp26, rcp45, rcp60, rcp85; these represent projections (for the future period 2006–2100) that result in radiative forcing of approximately 2.6, 4.5, 6.0 and 8.5 Wm−2 at year 2100, respectively, relative to pre-industrial conditions. The results are presented in terms of time projections of the energetics components from 2020 to 2100 and show that the different RCPs yield diverse energetics regimes, consequently impacting the Lorenz energy cycle. In this respect, projections under different RCPs of the Lorenz energy cycle are presented.

2018 ◽  
Vol 10 (4) ◽  
pp. 818-834 ◽  
Author(s):  
Amir Asadi Vaighan ◽  
Nasser Talebbeydokhti ◽  
Alireza Massah Bavani ◽  
Paul Whitehead

Abstract This study examined the separate and combined impacts of future changes in climate and land use on streamflow, nitrate and ammonium in the Kor River Basin, southwest of Iran, using the representative concentration pathway 2.6 and 8.5 scenarios of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Different land use and climate change scenarios were used and the streamflow, nitrate and ammonium in the future period (2020–2049) under these scenarios were simulated by Integrated Catchment Model for Nitrogen (INCA–N). Results indicated that climate change will increase streamflows and decrease nitrate and ammonium concentrations in summer and autumn. Land use changes were found to have a little impact on streamflows but a significant impact on water quality, particularly under an urban development scenario. Under combined scenarios, larger seasonal changes in streamflows and mixed changes of nitrate and ammonium concentrations were predicted.


Author(s):  
David W. Orr

In our final hour (2003), cambridge university astronomer Martin Rees concluded that the odds of global civilization surviving to the year 2100 are no better than one in two. His assessment of threats to humankind ranging from climate change to a collision of Earth with an asteroid received good reviews in the science press, but not a peep from any political leader and scant notice from the media. Compare that nonresponse to a hypothetical story reporting, say, that the president had had an affair. The blow-dried electronic pundits, along with politicians of all kinds, would have spared no effort to expose and analyze the situation down to parts per million. But Rees’s was only one of many credible and well-documented warnings from scientists going back decades, including the Fourth Assessment Report from the Intergovernmental Panel on Climate Change (2007). All were greeted with varying levels of denial, indifference, and misinterpretation, or were simply ignored altogether. It is said to be a crime to cause panic in a crowded theater by yelling “fire” without cause, but is it less criminal not to warn people when the theater is indeed burning? My starting point is the oddly tepid response by U.S. leaders at virtually all levels to global warming, more accurately described as “global destabilization.” I will be as optimistic as a careful reading of the evidence permits and assume that leaders will rouse themselves to act in time to stabilize and then reduce concentrations of greenhouse gases below the level at which we lose control of the climate altogether by the effects of what scientists call “positive carbon cycle feedbacks.” Even so, with a warming approaching or above 2°C we will not escape severe social, economic, and political trauma. In an e-mail to the author on November 19, 2007, ecologist and founder of the Woods Hole Research Center George Woodwell puts it this way: . . . There is an unfortunate fiction abroad that if we can hold the temperature rise to 2 or 3 degrees C we can accommodate the changes. The proposition is the worst of wishful thinking.


2017 ◽  
Vol 10 (2) ◽  
pp. 72-81
Author(s):  
Paul O'Keefe

The fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014) says that accelerated climate change is occurring because of enhanced release of greenhouse gases. It is projected that temperatures will increase in East Africa but there is no agreement on how precipitation will change. There is acceptance that the climate system will throw up more frequent extreme conditions, including drought. We can begin to understand how this will materialize in people's livelihood strategies and adaptive choices. This paper identifies theoretical problems in the dominant discourses surrounding human-environment relations and climate change, and argues for a dialectical approach to the subject. It concludes with a brief vignette focused on a dialectical study of climate change.


Climate ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 107
Author(s):  
Marin Akter ◽  
Rubaiya Kabir ◽  
Dewan Sadia Karim ◽  
Anisul Haque ◽  
Munsur Rahman ◽  
...  

Risk assessment of climatic events and climate change is a globally challenging issue. For risk as well as vulnerability assessment, there can be a large number of socioeconomic indicators, from which it is difficult to identify the most sensitive ones. Many researchers have studied risk and vulnerability assessment through specific set of indicators. The set of selected indicators varies from expert to expert, which inherently results in a biased output. To avoid biased results in this study, the most sensitive indicators are selected through sensitivity analysis performed by applying a non-linear programming system, which is solved by Karush-Kuhn-Tucker conditions. Here, risk is assessed as a function of exposure, hazard, and vulnerability, which is defined in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), where, exposure and vulnerability are described via socioeconomic indicators. The Kolmogorov-Smirnov statistical test is applied to select the set of indicators that are the most sensitive for the system to assess risk. The method is applied to the Bangladesh coast to determine the most sensitive socioeconomic indicators in addition to assessing different climatic and climate change hazard risks. The methodology developed in this study can be a useful tool for risk-based planning.


Sign in / Sign up

Export Citation Format

Share Document