scholarly journals Durability of Structural Lightweight Concrete Containing Different Types of Natural or Artificial Lightweight Aggregates

2021 ◽  
Vol 2 (4) ◽  
pp. 554-567
Author(s):  
Efstratios Badogiannis ◽  
Maria Stratoura ◽  
Konstantinos Aspiotis ◽  
Alexandros Chatzopoulos

Different structural lightweight concrete mixtures of specific density and strength classes were produced by using various lightweight aggregates (LWAs) such as pumice, perlite, and rice husk ash. Their properties were evaluated in fresh and hardened states with regards to compressive strength and durability parameters such as water absorption (open porosity and capillary absorption), chloride’s penetration resistance, and carbonation depth. According to the results, most LWA concrete mixtures performed satisfactorily in terms of the designed strength and density and they could be used as structural LWA concrete mixtures. As far as the durability of LWA concrete was concerned, open porosity and resistance to the carbonation of LWA concrete were burdened with the porous nature of LWAs, while sorptivity in some mixtures and especially chlorides’ penetration resistance in all mixtures were reported to be significantly improved. The overall strength and durability performance of the designed LWA concrete mixtures could mitigate the concerns stemming from its vulnerability to extreme exposure conditions.

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2434 ◽  
Author(s):  
Deividas Rumsys ◽  
Edmundas Spudulis ◽  
Darius Bacinskas ◽  
Gintaris Kaklauskas

This study is focused on the experimental investigation of compressive strength and durability properties of lightweight concrete mixtures with fine expanded glass and expanded clay aggregates using different microfillers. The paper proposes the relationships between the compressive strength and density of concrete mixtures with different proportions of the lightweight aggregates mentioned above. The performed experimental studies have revealed the tendencies of possible usage of different amounts of fine lightweight aggregates and their combinations in the production of concrete mixtures depending on the demands of practical application. Following the requirements for structural concrete subjected to environmental effects, durability properties (alkaline corrosion and freeze–thaw resistance) of the selected concrete mixtures with expanded glass aggregate were studied. The results of the experimental investigations have shown that durability of tested concrete specimens was sufficient. The study has concluded that the mixtures under consideration can be applied for the production of structural elements to which durability requirements are significant.


Author(s):  
Deividas Rumsys ◽  
Edmundas Spudulis ◽  
Darius Bacinskas ◽  
Gintaris Kaklauskas

This study is focused on the experimental investigation of compressive strength and durability properties of lightweight concrete mixtures with fine expanded glass and expanded clay aggregates using different microfillers. The paper proposes the relationships between the compressive strength and density of concrete mixtures with different proportions of lightweight aggregates mentioned above. The performed experimental studies have revealed the tendencies of possible usage of different amount of fine lightweight aggregates and their combinations in the production of concrete mixtures depending on the demands of practical application. Following the requirements for structural concrete subjected to environmental effects, durability properties (alkaline corrosion and freeze–thaw resistance) of the selected concrete mixtures with expanded glass aggregate were studied. The results of the experimental investigations have shown that durability of tested concrete specimens was sufficient. The study has concluded that the mixtures under consideration can be applied for the production of structural elements to which durability requirements are significant.


2019 ◽  
Vol 11 (7) ◽  
pp. 1876 ◽  
Author(s):  
Carlos Parra ◽  
Eva M. Sánchez ◽  
Isabel Miñano ◽  
Francisco Benito ◽  
Pilar Hidalgo

The use of waste materials as lightweight aggregates in concrete is highly recommended in seismic risk areas and environmentally recommended. However, reaching the strength needed for the concrete to be used structurally may be challenging. In this study four dosages were assayed: the first two-specimen had high cement content (550 and 700 kg/m3 respectively), Nanosilica, fly ash and superplasticizer. These samples were high performance, reaching a strength of 100MPa at 90 days. The other two mixtures were identical but replaced 48% of the aggregates with recycled lightweight aggregates (30% polypropylene, 18.5% cork). To estimate its strength and durability the mixtures were subjected to several tests. Compression strength, elasticity modulus, mercury intrusion porosimetry, carbonation, attack by chlorides, and penetration of water under pressure were analyzed. The compression strength and density of the lightweight mixtures were reduced 68% and 19% respectively; nonetheless, both retained valid levels for structural use (over 30MPa at 90 days). Results, such as the total porosity between 9.83% and 17.75% or the chloride ion penetration between 8.6 and 5.9mm, suggest that the durability of these concretes, including the lightweight ones, is bound to be very high thanks to a very low porosity and high resistance to chemical attacks.


2021 ◽  
Vol 11 (4) ◽  
pp. 1672
Author(s):  
Jose Alexandre Bogas ◽  
Hawreen Hasan Ahmed ◽  
Tomás Diniz

This study focuses on the influence of natural and artificially induced cracks on the durability of concrete reinforced with carbon nanotubes (CNT). Pre-cracked concrete mixes, unreinforced or reinforced with 0.1% CNT, are characterized in terms of capillary absorption, carbonation, and chloride penetration resistance, and compared to the uncracked reference concrete. The mechanical strength and durability properties were improved in uncracked CNT-reinforced concrete, without significantly affecting its density and workability. The efficiency of CNT was higher when the concrete was previously subjected to drying conditions. For all tested properties, the incorporation of CNT was effective in reducing the influence of artificial and natural cracks on concrete durability. The main contribution of CNT occurred in the crack surrounding region. Depending on the analyzed property and cracking conditions, the significant reduction of durability in cracked concrete may be 10–30% attenuated when CNT is incorporated. The effect was more pronounced in mechanically induced natural cracks, where CNT may better participate in their vicinity.


2006 ◽  
Vol 12 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Luiz Antonio Pereira de Oliveira ◽  
João Paulo de Castro Gomes ◽  
Cristiana Nadir Gonilho Pereira

This work presents the results of a comparative study of the sorptivity, accomplished in mixtures of selfcompacting concrete with different types of additives and a normal concrete compacted by vibration. The self‐compacting concrete mixtures present slump‐flow of 650 ± 50 mm and have the same cement contents. In the self‐compacting mixtures, were used as additives, fly ash, silica fume, hydraulic lime and a mixture of fly ash and hydraulic lime. A modified carboxylates superplasticiser was used to obtain a specific workability. The capillary absorption was carried out at 7, 14 and 28 days of age, through a methodology described in the work. The results permit to conclude that the used additives propitiate the self‐compacting concrete. In terms of capillary absorption, the mixtures with fly ash have a better performance.


2004 ◽  
Vol 26 (4) ◽  
pp. 307-314 ◽  
Author(s):  
M.N Haque ◽  
H Al-Khaiat ◽  
O Kayali

2021 ◽  
Vol 11 (16) ◽  
pp. 7251
Author(s):  
Jorge Pontes ◽  
José Alexandre Bogas ◽  
Sofia Real ◽  
André Silva

Chloride-induced corrosion has been one of the main causes of reinforced concrete deterioration. One of the most used methods in assessing the chloride penetration resistance of concrete is the rapid chloride migration test (RCMT). This is an expeditious and simple method but may not be representative of the chloride transport behaviour of concrete in real environment. Other methods, like immersion (IT) and wetting–drying tests (WDT), allow for a more accurate approach to reality, but are laborious and very time-consuming. This paper aims to analyse the capacity of RCMT in assessing the chloride penetration resistance of common concrete produced with different types of aggregate (normal and lightweight) and paste composition (variable type of binder and water/binder ratio). To this end, the RCMT results were compared with those obtained from the same concretes under long-term IT and WDT. A reasonable correlation between the RCMT and diffusion tests was found, when slow-reactive supplementary materials or porous lightweight aggregates surrounded by weak pastes were not considered. A poorer correlation was found when concrete was exposed under wetting–drying conditions. Nevertheless, the RCMT was able to sort concretes in different classes of chloride penetration resistance under distinct exposure conditions, regardless of the type of aggregate and water/binder ratio.


2017 ◽  
Vol 146 ◽  
pp. 403-409 ◽  
Author(s):  
Tung-Chai Ling ◽  
Kim Hung Mo ◽  
Lie Qu ◽  
Jiujun Yang ◽  
Lei Guo

Sign in / Sign up

Export Citation Format

Share Document