scholarly journals Application of Polyvinyl Acetate/Lignin Copolymer as Bio-Based Coating Material and Its Effects on Paper Properties

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 192
Author(s):  
Nana Zhang ◽  
Pansheng Liu ◽  
Yanbin Yi ◽  
Magdi E. Gibril ◽  
Shoujuan Wang ◽  
...  

In this work, lignin-vinyl acetate copolymers containing different fractions of lignin were synthesized by the copolymerization technique. The synthesized copolymer was successfully applied to coat the paper for enhancing its properties and performance. The effects of the lignin-vinyl acetate copolymer on the physicochemical, air permeability and mechanical properties of paper were investigated. The mechanical strength, hydrophilic, and air permeability properties of coated paper were improved with the increasing content of the lignin. Lignin-vinyl acetate copolymer containing 15% lignin coated paper exhibited a 1.86 times increase in the tensile index, 45 times increase in the water contact angle, and a 41.1% reduction in the air permeability compared with uncoated paper. Scanning electron microscopy was applied to study the morphology of the coated and uncoated paper. The results showed that paper surface porosity structure was decreased, while the surface smoothness was enhanced considerably with increasing lignin fraction in the copolymer. Therefore, the successful fabrication of such an enchanting coated paper may afford new potential and great applications in the packaging paper.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanan Li ◽  
Rina Wu ◽  
Jiahui Shi ◽  
Gaosheng Wang

Abstract Coated paper with enhanced barrier properties was prepared via a simple layered self-assembly method using hemicellulose and starch as biobased coatings. Effect of the coating on properties of cellulose paper was investigated. Barrier properties of the paper was increasingly strengthened as the coating amount of hemicellulose rose. When the paper was coated with starch (10.7±0.3  g / m 2 \text{g}/{\text{m}^{2}} ) and hemicellulose (6.9±0.2  g / m 2 \text{g}/{\text{m}^{2}} ) successively, the oil resistance of the paper was increased from 0 to grade 7. Air permeability and water vapor transmittance was decreased by 93.8 % and 39.7 %, respectively. The water contact angle of the coated paper reached 91.7° when the amount of hemicellulose was 1.5±0.2  g / m 2 \text{g}/{\text{m}^{2}} . The hydrophobicity of the coated paper was superior to the original paper although it was negatively influenced by the increasing amount of hemicellulose. The improvement of barrier properties of the coated paper was mainly ascribed to the formation of a thin polymer network on paper surface through intermolecular interaction via hydrogen bonds as demonstrated in SEM and FTIR-ATR results. Moreover, tensile strength and rupture resistance of the coated paper was improved. The results offered an environmentally friendly and economical strategy for preparation of food packaging paper with good barrier properties using biobased coating materials.


Author(s):  
Yong-Kyu Lee ◽  
Jong Myoung Won ◽  
Woo-Jae Lee ◽  
Yong-Hae Choi

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1607
Author(s):  
Kaipeng Wang ◽  
Lihong Zhao ◽  
Beihai He

Here, we report a non-toxic method for improving the oil-resistant performance of chitosan coated paper by coating the mixture of chitosan and montmorillonite (MMT) instead of coating chitosan solution only. Through combining MMT into the chitosan coatings, the coated paper exhibited a lower air permeability and enhanced oil resistance under a lower coating load. For coated papers C2.5 and C3 by coating 2.5% (w/v) and 3% (w/v) chitosan without adding MMT in the chitosan coating, the coating load was 3.76 g/m2 and 3.99 g/m2, respectively, and the kit rating values were only 7–8/12. Regarding the sample C2M0.1 coated by the mixed solution containing 2% (w/v) chitosan and 0.1% (w/v) MMT, its coating load was only 3.65 g/m2, the paper permeability after coating was reduced to 0.00507 μm/Pa·s, owing to the filling of MMT into the cellulosic fibers network, and the kit rating reached 9/12. Moreover, C2M0.1 showed improved mechanical properties, whereby its tearing resistance was 5.2% and 6.6% higher than that of the uncoated paper in the machine direction and the cross direction, respectively.


2021 ◽  
Author(s):  
Feijie Wang ◽  
Liqiang Wang ◽  
Xinchang Zhang ◽  
Shufeng Ma

Abstract Paper is widely used as food packaging due to its good mechanical strength and degradability. However, it has a relatively strong affinity for water and oil, which limits its application scope. In this work, we prepare two types of coated paper to investigate, the influence the air permeability and polarity on the oil resistance of the coated paper. The results showed that reducing the air permeability improved the grease resistance of the coated paper. High surface energy coatings also showed better oil resistance because of their higher content of polar components that resulted in a higher resistance to grease. The mechanical properties of the paper also improved after applying the coating. These natural derived materials offer an alternative to the fluoride-containing materials currently used in the market to improve the wettability of paper.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (2) ◽  
pp. 93-99
Author(s):  
SEYYED MOHAMMAD HASHEMI NAJAFI ◽  
DOUGLAS BOUSFIELD, ◽  
MEHDI TAJVIDI

Cracking at the fold of publication and packaging paper grades is a serious problem that can lead to rejection of product. Recent work has revealed some basic mechanisms and the influence of various parameters on the extent of crack area, but no studies are reported using coating layers with known mechanical properties, especially for double-coated systems. In this study, coating layers with different and known mechanical properties were used to characterize crack formation during folding. The coating formulations were applied on two different basis weight papers, and the coated papers were folded. The binder systems in these formulations were different combinations of a styrene-butadiene latex and mixtures of latex and starch for two different pigment volume concentrations (PVC). Both types of papers were coated with single and double layers. The folded area was scanned with a high-resolution scanner while the samples were kept at their folded angle. The scanned images were analyzed within a constant area. The crack areas were reported for different types of papers, binder system and PVC values. As PVC, starch content, and paper basis weight increased, the crack area increased. Double layer coated papers with high PVC and high starch content at the top layer had more cracks in comparison with a single layer coated paper, but when the PVC of the top layer was low, cracking area decreased. No measurable cracking was observed when the top layer was formulated with a 100% latex layer.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (8) ◽  
pp. 515-521 ◽  
Author(s):  
EIJA KENTTÄ ◽  
HANNA KOSKELA ◽  
SARA PAUNONEN ◽  
KARITA KINNUNEN-RAUDASKOSKI ◽  
TUOMO HJELT

This paper reports experiments on silica coating formulations that are suitable for application as a thin pigment layer with foam coating technique on a paper web. To understand the foaming properties of nanosilica dispersions, the critical micelle concentration, foam half-life time, and foam bubble size stability were determined with three different foaming agents. The results indicate that the bubble stability measurement is a useful characterization method for foam coating purposes. Pilot foam coating trials were done and the effects of the chosen foaming agents were studied on the properties of the nanosilica-coated paper. The surface hydrophilicity of silica coated paper was related not only to silica pigment, but also to the chemical nature of the foaming agent. Standard paper properties were not affected by the thin silica coating.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4361
Author(s):  
Tinkara Mastnak ◽  
Aleksandra Lobnik ◽  
Gerhard Mohr ◽  
Matjaž Finšgar

The article presents naked-eye methods for fast, sensitive, and selective detection of isopentylamine and cadaverine vapours based on 4-N,N-dioctylamino-4′-dicyanovinylazobenzene (CR-528) and 4-N,N-dioctylamino-2′-nitro-4′-dicyanovinylazobenzene (CR-555) dyes immobilized in ethylene-vinyl acetate copolymer (EVA). The reaction of CR-528/EVA and CR-555/EVA indicator layers with isopentylamine vapours caused a vivid colour change from pink/purple to yellow/orange-yellow. Additionally, CR-555/EVA showed colour changes upon exposure to cadaverine. The colour changes were analysed by ultraviolet–visible (UV/VIS) molecular absorption spectroscopy for amine quantification, and the method was partially validated for the detection limit, sensitivity, and linear concentration range. The lowest detection limits were reached with CR-555/EVA indicator layers (0.41 ppm for isopentylamine and 1.80 ppm for cadaverine). The indicator layers based on EVA and dicyanovinyl azobenzene dyes complement the existing library of colorimetric probes for the detection of biogenic amines and show great potential for food quality control.


Sign in / Sign up

Export Citation Format

Share Document