Sustainable coatings on paper for enhancing barrier properties based on hemicellulose

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanan Li ◽  
Rina Wu ◽  
Jiahui Shi ◽  
Gaosheng Wang

Abstract Coated paper with enhanced barrier properties was prepared via a simple layered self-assembly method using hemicellulose and starch as biobased coatings. Effect of the coating on properties of cellulose paper was investigated. Barrier properties of the paper was increasingly strengthened as the coating amount of hemicellulose rose. When the paper was coated with starch (10.7±0.3  g / m 2 \text{g}/{\text{m}^{2}} ) and hemicellulose (6.9±0.2  g / m 2 \text{g}/{\text{m}^{2}} ) successively, the oil resistance of the paper was increased from 0 to grade 7. Air permeability and water vapor transmittance was decreased by 93.8 % and 39.7 %, respectively. The water contact angle of the coated paper reached 91.7° when the amount of hemicellulose was 1.5±0.2  g / m 2 \text{g}/{\text{m}^{2}} . The hydrophobicity of the coated paper was superior to the original paper although it was negatively influenced by the increasing amount of hemicellulose. The improvement of barrier properties of the coated paper was mainly ascribed to the formation of a thin polymer network on paper surface through intermolecular interaction via hydrogen bonds as demonstrated in SEM and FTIR-ATR results. Moreover, tensile strength and rupture resistance of the coated paper was improved. The results offered an environmentally friendly and economical strategy for preparation of food packaging paper with good barrier properties using biobased coating materials.

2021 ◽  
Vol 10 (1) ◽  
pp. 37-48
Author(s):  
Sijia Li ◽  
Chun Shao ◽  
Zhikun Miao ◽  
Panfang Lu

Abstract Waste biomass can be used as a raw material for food packaging. Different concentrations of gelatin (GEL) were introduced into the leftover rice (LR) system to form an interpenetrating polymer network (IPN) for improving the properties of the films. The structure and morphology of films were evaluated by Fourier transform infrared, scanning electron microscopy, and atomic force microscopy, which showed good compatibility between LR and GEL. The moisture content and oil absorption rate of IPN films were down by 105% and 182%, respectively, which showed better water and oil resistance than the LR film. In addition, increasing GEL concentration led to enhancement in the tensile strength of films from 2.42 to 11.40 MPa. The water contact angle value of the IPN films (117.53°) increased by 147% than the LR film (47.56°). The low haze of IPN films was obtained with the increment of the mutual entanglement of LR and GEL. The 30–50% GEL addition improved the water vapor barrier and thermal stability properties of the IPN films. This study highlights that LR as waste biomass can have a practical application in food packaging.


2010 ◽  
Vol 434-435 ◽  
pp. 579-581
Author(s):  
Zhi Xian Zhang ◽  
Fan Xiao ◽  
Fei Gao

The TiO2 nanopowder was prepared with TiOSO4 as raw material at low temperature by hydrolysis method, and microspheres coated polyethylene and TiO2 were then fabricated on titanium by layer-by-layer self-assembly technology. Using ultraviolet irradiation of titanium coating in distilled water for some time, titanium with enhanced bioactivity was achieved when immersed in simulated body fluid (SBF). The morphology, size and crystal shape before and after ultraviolet irradiation were characterized by scanning electron microcopy (SEM) and X-ray diffraction (XRD). UV irradiation of titanium results in the conversion of Ti4+ to Ti3+ and the generation of oxygen vacancies, which could react with the absorbed water to form basic Ti–OH groups. Compared with the coating non-UV irradiation, the UV-irradiated coatings do not present any obvious differences in morphology, surface roughness, grain size and phase component; however, they have more abundant basic Ti–OH groups thus the water contact angle decreases greatly so the surface become much more hydrophilic.


2012 ◽  
Vol 200 ◽  
pp. 365-368
Author(s):  
Xue Mei Liu ◽  
Fun Xin Yang ◽  
Feng Xian Wang

Biopolymers have the potential to serve as coating materials for paper to improve its performance properties. The objectives of this study were to determine the effect of kelp coating on the physical properties of coated papers. It was found that kelp coated paper showed significant difference on physical properties, compared with uncoated. Kelp coated papers greatly increased in tensile strength. Paper coated with kelp solution can be used to produce packages with the potential to be used to maintain agricultural produce quality for the food industry, and may have other applications.


2013 ◽  
Vol 469 ◽  
pp. 87-90
Author(s):  
Li Liu ◽  
Yun Zhi Chen ◽  
Zheng Jian Zhang

Microfibrillated cellulose (MFC) was prepared from the bleached kraft hardwood pulp using TEMPO/NaClO/NaBr oxidation system and high pressure homogenization. By changing dosages of the TEMPO, NaClO and NaBr, the pressure and times of homogenization, pretreatment and homogenization process were optimized. Experimental investigation indicated that for making MFC of high quality, 0.25%TEMPO, 2.5%NaBr, 60%NaClO (based on oven dry pulp), 20 times of homogenization, pressure of 60MPa in the process of treatment were required. At last, the mechanical and barrier properties were tested after the base paper was coated by homemade MFC. The study suggested that mechanical properties (especially 5 times increase of the folding strength) increased substantially and air permeability decreased by 100times.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 566 ◽  
Author(s):  
Petronela Nechita ◽  
Mirela Roman (Iana-Roman)

Paper and board show many advantages as packaging materials, but the current technologies employed to obtain adequate barrier properties for food packaging use synthetic polymers coating and lamination with plastic or aluminium foils—treatments which have a negative impact on packaging sustainability, poor recyclability and lack of biodegradability. Recently, biopolymers have attracted increased attention as paper coatings, which can provide new combinations in composite formulas to meet the requirements of food packaging. The number of studies on biopolymers for developing barrier properties of packaging materials is increasing, but only a few of them are addressed to food packaging paper. Polysaccharides are viewed as the main candidates to substitute oil-based polymers in food paper coating, due to their film forming ability, good affinity for paper substrate, appropriate barrier to gases and aroma, and positive effect on mechanical strength. Additionally, these biopolymers are biodegradable, non-toxic and act as a matrix for incorporation additives with specific functionalities for coated paper (i.e., active-antimicrobial properties). This paper presents an overview on the availability and application of polysaccharides from vegetal and marine biomass in coatings for foods packaging paper. The extraction methods, chemical modification and combination routes of these biopolymers in coatings for paper packaging are discussed.


MRS Advances ◽  
2018 ◽  
Vol 4 (07) ◽  
pp. 359-367 ◽  
Author(s):  
Chaolang Chen ◽  
Ding Weng ◽  
Awais Mahmood ◽  
Jiadao Wang

AbstractIn this study, a superhydrophobic and superoleophilic stainless mesh coated with polytetrafluoroethylene/silicon dioxide (PTFE/SiO2) was fabricated through electrostatic self-assembly method followed by sintering treatment. The PTFE was utilized to construct low-surface-energy surface and the SiO2 nanoparticles were added to enhance its surface roughness. The as-prepared stainless mesh exhibited desirable superhydrophobicity and superoleophilicity with a water contact angle of 152° and oil contact angle of 0°. The coated stainless mesh could separate a variety of oil/water mixtures with high efficiency and it also exhibited good recyclability. Moreover, the corrosion-resistance of stainless mesh was greatly improved by coating it with PTFE. The thermogravimetric analysis (TGA) measurements showed that the coated mesh could withstand high temperature of up to 430°C, indicating excellent thermal-resistance. It is believed that this ultra-robust stainless mesh would have significant potential applications in industry.


2019 ◽  
Vol 14 ◽  
pp. 155892501988961
Author(s):  
Liping Liang ◽  
Manuel J Lis Arias ◽  
Zixuan Lou ◽  
Qiaole Mao ◽  
Chang Ye ◽  
...  

Preparation of hydrophobic cotton fabric based on the self-assembly method was proposed. The cotton fabric was modified with 3-(methacryloyloxy)propyltrimethoxysilane and grafted with trifluoroethyl methacrylate and dodecafluoroheptyl methacrylate through free radical polymerization reaction. The objective of this research work was to investigate the effect of fluorine monomer with different chemical structure deposited on cotton fabric on the hydrophobic property. The chemical structure, surface topography, and surface wettability of the fabrics were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle experiments, respectively. The results showed that the as-prepared fabrics exhibited water contact angle of above 140°. It was noticed that the fluorocarbon chain length of a modifier and its chemical structure could strongly affect the hydrophobic property of the modified fabrics, and the increase in fluorine atoms caused an increase in the water contact angle values.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1929 ◽  
Author(s):  
Wangxia Wang ◽  
Tianyu Guo ◽  
Kaiyong Sun ◽  
Yongcan Jin ◽  
Feng Gu ◽  
...  

Renewable cellulose-based materials have gained increasing interest in food packaging because of its favorable biodegradability and biocompatibility, whereas the barrier properties of hydrophilic and porous fibers are inadequate for most applications. Exploration of lignin redistribution for enhancing barrier properties of paper packaging material was carried out in this work. The redistribution of nanolized alkali lignin on paper surface showed excellent water, grease, and water vapor barrier. It provided persisted water (contact angle decrease rate at 0.05°/s) and grease (stained area undetectable at 72 h) resistance under long-term moisture or oil direct contact conditions, which also inhibited the bacterial growth to certain degree. Tough water vapor transmission rate can be lowered 82% from 528 to 97 g/m2/d by lignin redistribution. The result suggests that alkali lignin, with multiple barrier properties, has great potential in bio-based application considering the biodegradability, biocompatibility, and recyclability.


2021 ◽  
Vol 1021 ◽  
pp. 280-289
Author(s):  
Abdulkader M. Alakrach ◽  
Awad A. Al-Rashdi ◽  
Mohamed Khalid Al-Omar ◽  
Taha M. Jassam ◽  
Sam Sung Ting ◽  
...  

In this study, PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films were fabricated via solution casting method. By testing the film density, solubility, water contact angle and water vapor permeability, the PLA nanocomposite films, the comprehensive performances of the nanocomposites were analysed. The outcomes demonstrated that maximum film density of PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films increased gradually with the increasing of nanofiller loadings. Moreover, the incorporation of TiO2 and HNTs-TiO2 significantly decreased the water vapor transmittance rate of the nanocomposite films with a slight priority to the addition of HNTs-TiO2, the water solubility was significantly improved with the addition of both nanofillers. Furthermore, the barrier properties were developed with the addition of both TiO2 and HNTs-TiO2 especially after the addition of low nanofiller loadings. Overall, the performance of the PLA/HNTs-TiO2 nanocomposite films was better than that PLA/TiO2 film. Nevertheless, both of the PLA nanocomposite samples achieved the requests of food packaging applications.


Sign in / Sign up

Export Citation Format

Share Document