scholarly journals Radical Scavenging and Catalytic Activity of Fe-Cu Bimetallic Nanoparticles Synthesized from Ixora finlaysoniana Extract

Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 813
Author(s):  
Umer Younas ◽  
Syed Taimoor Hassan ◽  
Faisal Ali ◽  
Faiza Hassan ◽  
Zohaib Saeed ◽  
...  

Iron–copper bimetallic nanoparticles (Fe-Cu BNPs) were prepared via a green synthesis route. Ixora finlaysoniana has been used in this study as a capping and stabilizing agent in the modification of Fe-Cu BNPs. As-synthesized BNPs were characterized using different techniques including UV/Vis spectrophotometry, FTIR, XRD and SEM. A particle size analyzer and SEM studies indicated the particle size to be in the range of 50–200 nm. In addition, degradation of MB dye in an aqueous system and radical-scavenging potential in a DPPH assay were also examined using BNPs. Methylene blue dye degradation in 17 min was monitored with UV/Vis spectrophotometry, which exhibited the efficiency of Fe-Cu BNPs. Bimetallic nanoparticles were also found to be efficient in neutralizing DPPH free radicals. Furthermore, kinetic studies of both dye degradation and radical scavenging potential are reported in this article. Subsequently, Fe-Cu BNPs synthesized via a green and sustainable method can be employed for dye degradation and free radical-scavenging activities.

2014 ◽  
Vol 68 (10) ◽  
Author(s):  
Mária Baňasová ◽  
Katarína Valachová ◽  
Ivo Juránek ◽  
Ladislav Šoltés

AbstractOxidative stress and the resulting damage to cellular and extracellular components has been observed in a variety of degenerative processes, including degenerative joint disorders, where high-molar-mass hyaluronan (HA) is often found to be massively degraded. The present study sought to test the hypothesis that dithiols are more effective in protecting biomacromolecules from free-radicalmediated damage than monothiols. The materials/thiols tested included bucillamine (BUC), dithioerythritol (DTE), dithiothreitol (DTT) and glutathione (GSH), as a reference, for their effectiveness in protecting HA from oxidative degradation induced in vitro. Since HA degradation results in a decrease in its dynamic viscosity, rotational viscometry was applied to follow HA oxidative degradation. The free-radical-scavenging activities of the thiols tested were determined by 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assays. It was found that all the dithiols in the concentration range tested protected HA from the oxidative degradation. On the other hand, monothiol GSH exerted protection only at high concentrations (10 μmol L−1 and 100 μmol L−1) and 1 μmol L−1 of GSH even exhibited a prodegradative effect. The ABTS assay revealed free-radical scavenging activities in the following order: BUC, DTT, DTE, GSH, and that of the DPPH assay: BUC, DTE, DTT, GSH. In conclusion, it was demonstrated that dithiols may be more effective than monothiols in affording biomacromolecule protection from oxidative degradation.


2020 ◽  
Vol 8 (3) ◽  
pp. 9-13
Author(s):  
Purnamasari Nur Aini ◽  
Dzakwan Muhammad ◽  
Pramukantoro Ganet Eko ◽  
Mauludin Rachmat ◽  
El Fahmi

Background: Phytosomes are recently introduced drug delivery system and novel botanical formulation to produce lipophilic molecular complex to improve absorption and bioavailability of phytoconstituent. Myricetin is a well-known flavonoid with different biological effects and contributed in food preserving by free radical scavenging activity. However, bioavailability of myricetin is an important limiting factor for its antioxidant activities. Purpose: To overcome this limitation, in the present study we aimed to produce myricetin-loaded nano phytosomes to improve its physicochemical stability and bioavailability. Methods: myricetin-loaded nano phytosome was prepared by using phosphatidylcholine (PC) and cholesterol (CH). Myricetin nanophytosomes system was characterized by particle size analyzer, particle size distribution (PDI), encapsulation efficiency and potential antioxidant activity. Results: Results showed that formulation with the myricetin: PC: CH molar ratio of 1: 2: 0.8 had lower particle size (291.11 nm) and higher encapsulation efficiency percent (93%). Morphology analysis showed that myricetin nanophytosome spherical shape. The potential antioxidant data showed that incorporation myricetin in the phospholipid myricetin remained unchanged even after encapsulation of myricetin in binarynanophytosome formulation. Conclusion: Nano phytosomal formulation of myricetin showed promising potential in fortification of nutraceutical with water insoluble antioxidants.  


2021 ◽  
Vol 34 (1) ◽  
pp. 216-222
Author(s):  
Arnannit Kuyyogsuy ◽  
Paweena Porrawatkul ◽  
Rungnapa Pimsen ◽  
Prawit Nuengmatcha ◽  
Benjawan Ninwong ◽  
...  

Silver nanoparticles were synthesized by bioreduction of silver nitrate using the aqueous leaf extract of Combretum indicum (CI-AgNPs). The synthesized CI-AgNPs exhibited a distinct absorption peak at 414 nm in UV-vis spectroscopy. Various parameters such as pH, temperature and time were optimized using spectrophotometry. The particle size of the CI-AgNPs was 48 nm as evaluated from the laser particle size analyzer. The XRD and EDX analyses confirmed the presence of silver in silver nanoparticles. Synthesized CI-AgNPs revealed significant antioxidant, antimicrobial (against Escherichia coli and Staphylococcus aureus) and photocatalytic (against methylene blue under sunlight irradiation) activities. Thus, an eco-friendly method was developed to synthesize silver nanoparticles using the C. indicum leaf extract.


2019 ◽  
Vol 22 (5) ◽  
pp. 200-205 ◽  
Author(s):  
Gusti Ayu Dewi Lestari ◽  
Iryanti Eka Suprihatin ◽  
James Sibarani

Silver nanoparticles (NPAg) are silver metal particles that are less than 100 nm in size. NPAg has several advantages, one of which is as a catalyst in the process of photodegradation. NPAg was obtained by reducing AgNO3 using andaliman fruit water extract (Zanthoxylum acanthopodium DC.). This synthesis method is very effective because it is fast, non-toxic and environmentally friendly technology. This research aims to synthesize optimum NPAg and its application in the photodegradation process of Indigosol Blue in the form of volume, irradiation time, and optimum pH. NPAg synthesis was observed using a UV-VIS spectrophotometer while its size was observed using PSA (Particle Size Analyzer). The results showed the best NPAg synthesized using 1x10-3 M AgNO3 at 60°C with average NPAg size of 9.04 nm. NPAg which is formed is stable for ± 35 days. The optimum condition for the photodegradation process was achieved by using 2 mL NPAg 4 hour irradiation at pH 3. From the results of this study it can be concluded that NPAg can to reduce the concentration of Indigosol Blue dye by up to 94.75%.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Asma Nasrullah ◽  
Hizbullah Khan ◽  
Amir Sada Khan ◽  
Zakaria Man ◽  
Nawshad Muhammad ◽  
...  

The ash ofC. polygonoides(locally called balanza) was collected from Lakki Marwat, Khyber Pakhtunkhwa, Pakistan, and was utilized as biosorbent for methylene blue (MB) removal from aqueous solution. The ash was used as biosorbent without any physical or chemical treatment. The biosorbent was characterized by using various techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The particle size and surface area were measured using particle size analyzer and Brunauer-Emmett-Teller equation (BET), respectively. The SEM and BET results expressed that the adsorbent has porous nature. Effects of various conditions such as initial concentration of methylene blue (MB), initial pH, contact time, dosage of biosorbent, and stirring rate were also investigated for the adsorption process. The rate of the adsorption of MB on biomass sample was fast, and equilibrium has been achieved within 1 hour. The kinetics of MB adsorption on biosorbent was studied by pseudo-first- and pseudo-second-order kinetic models and the pseudo-second-order has better mathematical fit with correlation coefficient value (R2) of 0.999. The study revealed thatC. polygonoidesash proved to be an effective, alternative, inexpensive, and environmentally benign biosorbent for MB removal from aqueous solution.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2653
Author(s):  
Umer Younas ◽  
Afzaal Gulzar ◽  
Faisal Ali ◽  
Muhammad Pervaiz ◽  
Zahid Ali ◽  
...  

Copper-nickel bimetallic nanoparticles (Cu-Ni BNPs) were fabricated using an eco-friendly green method of synthesis. An extract of synthesized Gazania rigens was used for the synthesis of BNPs followed by characterization employing different techniques including UV/Vis spectrophotometer, FTIR, XRD, and SEM. Spectrophotometric studies (UV-Vis and FTIR) confirmed the formation of bimetallic nanoparticles. The SEM studies indicated that the particle size ranged from 50 to 100 nm. Analysis of the BNPs by the XRD technique confirmed the presence of both Cu and Ni crystal structure. The synthesized nanoparticles were then tested for their catalytic potential for photoreduction of methylene blue dye in an aqueous medium and DPPH radical scavenging in a methanol medium. The BNPs were found to be efficient in the reduction of methylene blue dye as well as the scavenging of DPPH free radicals such that the MB dye was completely degraded in just 17 min at the maximum absorption of 660 nm. Therefore, it is concluded that Cu-Ni BNPs can be successfully synthesized using Gazania rigens extract with suitable size and potent catalytic and radical scavenging activities.


2013 ◽  
Vol 14 (3) ◽  
Author(s):  
Eriawan Rismana ◽  
Susi Kusumaningrum ◽  
Olivia Bunga P ◽  
Idah Rosidah ◽  
Marhamah Marhamah

The chitosan – Garcinia Mangostana extract nanoparticles has been prepared by ionic gelation reaction by mixture 0.2 % chitosan solution in acetic acid with Garcinia Mangostana extract and it’s continued by reaction process with 0.1 % sodium tripolyphosphate. The particle size of material was determined by Particle Size Analyzer (PSA) that it showed in the range of 200 – 500 nm. The color, pH, water, α- mangostin, mercury, arsenic, cadmium, lead, totally microbe aerobic, totally mold and yeast, and solvent residue contents of nanoparticles were also examined by many methods that these resulted are yellow, 4.50 – 5.50, 89 – 90 %, 1.05 %, < 0.005 ppm, < 0.01 ppm, < 0.01 ppm, < 0.05 ppm, < 10 CFU/g, < 10 CFU/g and not detected, respectively. The other characterization was also observed that it’sincluded stability andTLC chromatogram. A mixture of nanoparticles with cosmetics bases was showed that it’s increased stability, homogeneity and easy to formed.


Sign in / Sign up

Export Citation Format

Share Document