scholarly journals Green Synthesis, Characterization, Antioxidant, Antibacterial and Dye Degradation of Silver Nanoparticles using Combretum indicum Leaf Extract

2021 ◽  
Vol 34 (1) ◽  
pp. 216-222
Author(s):  
Arnannit Kuyyogsuy ◽  
Paweena Porrawatkul ◽  
Rungnapa Pimsen ◽  
Prawit Nuengmatcha ◽  
Benjawan Ninwong ◽  
...  

Silver nanoparticles were synthesized by bioreduction of silver nitrate using the aqueous leaf extract of Combretum indicum (CI-AgNPs). The synthesized CI-AgNPs exhibited a distinct absorption peak at 414 nm in UV-vis spectroscopy. Various parameters such as pH, temperature and time were optimized using spectrophotometry. The particle size of the CI-AgNPs was 48 nm as evaluated from the laser particle size analyzer. The XRD and EDX analyses confirmed the presence of silver in silver nanoparticles. Synthesized CI-AgNPs revealed significant antioxidant, antimicrobial (against Escherichia coli and Staphylococcus aureus) and photocatalytic (against methylene blue under sunlight irradiation) activities. Thus, an eco-friendly method was developed to synthesize silver nanoparticles using the C. indicum leaf extract.

Author(s):  
Shyamal K. Jash ◽  
Dilip Gorai ◽  
Arindam Gangopadhyay

The field of nanotechnology and nanoscience is the most currently an area of intense scientific interest for researchers in modern materials science. However there are many chemical as well as physical methods, green synthesis of nanomaterials is the most emerging method of synthesis. We report the synthesis of antibacterial silver nanoparticles (AgNPs) using aqueous leaf extract of medicinal herb Synedrella nodiflora (L.) Gaertn (Family: Asteraceae) at direct sunlight and monitored by UV-Vis spectroscopy. Both leaf extract and resulting AgNPs is subjected to antibacterial study against five pathogenic bacterial strains such as Bacillus megaterium, Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa and Salmonella typhimurium. AgNPs exhibited higher antibacterial efficacy than leaf extract and found to be more effective against                              B.  megaterium and  S. aureus.  


2018 ◽  
Vol 7 (3) ◽  
pp. 231-240 ◽  
Author(s):  
Omid Ahmadi ◽  
Hoda Jafarizadeh-Malmiri ◽  
Naeimeh Jodeiri

Abstract Silver nanoparticles (AgNPs) were synthesized using Aloe vera leaf extract as both reducing and stabilizing agents via microwave irradiation method. The effects of the microwave exposure time and the amount of AgNO3 solution on the mean particle size and concentration of the synthesized AgNPs solution were investigated using response surface methodology. The synthesized AgNPs were characterized by transmission electron microscopy, UV-Vis spectroscopy, and dynamic light scattering. Well-dispersed and spherically fabricated AgNPs with mean particle size (46 nm) and maximum concentration (64 ppm) and zeta potential (+15.5 mV), were obtained at optimal synthesis conditions, using 9 ml of AgNO3 (1 mm) and 0.1 ml of Aloe vera extract during microwave exposure time of 360 s. The antibacterial activity of the synthesized AgNPs was tested using Escherichia coli and Staphylococcus aureus bacteria and the obtained results indicated their significant inhibitory effects against these two Gram-negative and Gram-positive bacteria.


2017 ◽  
Vol 57 (2) ◽  
pp. 194-200 ◽  
Author(s):  
Abdul A. Buhroo ◽  
Gousul Nisa ◽  
Syed Asrafuzzaman ◽  
Ram Prasad ◽  
Razia Rasheed ◽  
...  

AbstractThe present exploration is focused on the bio-fabrication of silver nanoparticles (Ag NPs) usingTrichodesma indicumaqueous leaf extract as a reducing agent. The synthesized Ag NPs were productively characterized by UV-vis spectroscopy, XRD, and TEM studies. The photosynthesis of Ag NPs was done at room temperature for 24 h and at 60°C. The green synthesis of spherical-shaped Ag NPs bio-fabricated fromT. indicumwith a face centred cubic structure showed average particle sizes of 20–50 nm, which is inconsistent with the particle size calculated by the XRD Scherer equation and TEM analysis. We further explored the larvicidal efficacy of biosynthesized Ag NPs with leaf extracts ofT. indicumagainstMythimna separata. The results showed that Ag NPs (20–50 nm) ofT. indicumpossess good larvicidal activity againstM. separatawith an LC50of 500 ppm. Thus, we can advocate that Ag NPs of 20–50 nm size extracted fromT. indicummay be considered in the pest management programme ofM. separatain future.


2021 ◽  
Vol 12 (2) ◽  
pp. 2361-2372

In recent years, developing nanoparticles with green processes is gaining huge attention due to its cost-effectiveness, simplicity and non–toxic precursors. The present study utilized the potential of egg white for the synthesis of stable silver nanoparticles (EW-AgNPs). In order to characterize the EW-AgNPs, various techniques have been employed. UV-vis spectroscopy (300-700nm) was used to study the λmax, which highlighted the peak at 422nm. Further, the stability of synthesized EW-AgNPs was studied using Zeta potential, the value of -16.4 mV was obtained, indicating the stability of developed EW-AgNPs in the solution. Transmission electron microscopy was used specifically to visualize the shape and size of synthesized EW-AgNPs, the images showed spherical to the diverse shape of EW-AgNPs. In the first phase, the EW-AgNPs were studied for dye degradation along with NaBH4. The enhanced dye degradation of blue dye was obtained with EW-AgNPs+NaBH4, showing 90- 100% degradation from 100- 25 mgL-1 dye solution, respectively. Further, in the second phase, antimicrobial activity (Zone of Inhibition) of EW-AgNPs was analyzed against Escherichia coli and Staphylococcus aureus. A higher ZOI was obtained for E.coli (16mm) than S. aureus (12.4mm). The present study proved egg white's ability to develop stable silver nanoparticles, which was further found to be effective for blue dye degradation and antimicrobial activity.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. Hebeish ◽  
M. H. El-Rafie ◽  
M. A. El-Sheikh ◽  
Mehrez E. El-Naggar

Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20 nm with spherical shape and high concentration of AgNPs (30000 ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs).


2019 ◽  
Vol 7 (1) ◽  
pp. 51-60
Author(s):  
Paulina Taba ◽  
Nadya Yuli Parmitha ◽  
Syahruddin Kasim

Silver nanoparticles have been synthesized by the reduction method using salam leaf extract (Syzygium polyanthum) as a reducing agent. The silver nanoparticles produced were then tested for their activity as antioxidants. The formation of silver nanoparticles was carried out by adding the leaf extract into the solution of AgNO3 and homogenized using a magnetic stirrer. A UV-Vis spectrophotometer was used to confirm the formation of silver nanoparticles. Particle Size Analyzer (PSA), Scanning Electron Microscope (SEM), X-Ray Diffractometer (XRD) and Fourir Transform Infra Red (FTIR) spectrometers were used to characterize the nanoparticles produced before being tested for antioxidant activity. The results showed that the absorbance value increased with increasing reaction contact time. The maximum uptake was obtained at wavelengths of 432-446 nm using a UV-Vis spectrophotometer. The particle size was determined using a PSA with an average particle size distribution of 45.7 nm. The average diameter of silver nanoparticles was 10.06 – 13.97 nm and the silver nanoparticles had rod-shapes. Functional groups that play a role in the synthesis of nanoparticles were –OH, –C=O, and –C-O groups. Silver nanoparticles inhibited free radicals as antioxidants with the IC50 value of 582.7 ppm.


Author(s):  
M. Linga Rao ◽  
Bhumi G ◽  
Savithramma N

Silver nanoparticles (SNPs) exhibit tremendous applications in medicine as antimicrobial agent.  The use of different parts of plants for the synthesis of nanoparticles is considered as a green technology as it does not involve any harmful chemicals.  In the present study, we report a rapid biosynthesis of silver nanoparticles from aqueous leaf extract of medicinal plant Allamanda cathartica.  The active phytochemicals present in the plant were responsible for the quick reduction of silver ion to metallic silver nanoparticles. The reduced silver nanoparticles were characterized by using UV-Vis spectrophotometry, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-ray (EDAX) and Atomic Force Microscopy (AFM).  The spherical shaped silver nanoparticles were observed and it was found to 19-40 nm range of size.  These phytosynthesized SNPs were tested for their antimicrobial activity and it analyzed by measuring the inhibitory zone. A. cathartica aqueous leaf extract of SNPs showed highest toxicity to Pseudomonas followed by Klebsiella, Bacillus and E. coli and lowest toxicity towards Proteus. In fungal species, highest inhibition zone was noted against Rhizopus followed by Curvularia, Aspergillus flavus and Aspergillus niger and minimum inhibition zone was observed against Fusarium species.  These results suggest a promising potential of Indian plant-based green chemistry for production of SNPs for biomedical and nanotechnology applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Talanta ◽  
2016 ◽  
Vol 160 ◽  
pp. 735-744 ◽  
Author(s):  
Ayomide H. Labulo ◽  
Elijah T. Adesuji ◽  
Oyinade A. Dedeke ◽  
Olusola S. Bodede ◽  
Charles O. Oseghale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document