scholarly journals Fabrication of a UV Photodetector Based on n-TiO2/p-CuMnO2 Heterostructures

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1380
Author(s):  
Mircea Nicolaescu ◽  
Cornelia Bandas ◽  
Corina Orha ◽  
Viorel Şerban ◽  
Carmen Lazău ◽  
...  

The heterojunction based on n-TiO2 nanolayer/p-CuMnO2 thin film was achieved using an efficient two-step synthesis process for the fabrication of a UV photodetector. The first step consisted of obtaining the TiO2 nanolayer, which was grown on titan foil by thermal oxidation (Ti-TiO2). The second step consisted of CuMnO2 thin film deposition onto the surface of Ti-TiO2 using the Doctor Blade method. Techniques such as X-ray diffraction, UV-VIS analysis, SEM, and AFM morphologies were used for the investigation of the structural and morphological characteristics of the as-synthesized heterostructures. The Mott–Schottky analysis was performed in order to prove the n-TiO2/p-CuMnO2 junction. The I-V measurements of the n-TiO2 nanolayer/p-CuMnO2 thin film heterostructure confirm its diode characteristics under dark state, UV and visible illumination conditions. The obtained heterojunction, which is based on two types of semiconductors with different energy band structures, improves the separating results of charges, which is very important for high-performance UV photodetectors.

1989 ◽  
Vol 169 ◽  
Author(s):  
J.T. Kucera ◽  
D.G. Steel ◽  
D.W. Face ◽  
J.M. Graybeal ◽  
T.P. Orlando ◽  
...  

AbstractWe have reproducibly prepared thin films of Bi‐Sr‐Ca‐Cu‐O with Tc ≥ 105K. Depositions were done at ambient temperature with a subsequent post‐deposition anneal, and did not include lead substitution. X‐ray diffraction data indicates a majority fraction of the 2223 phase. These films possess very large grains of the order of 20‐30 u.m in size. Post‐deposition annealing conditions are a sensitive function of composition. Detailed transport measurements as a function of temperature and magnetic field have been obtained.


2015 ◽  
Vol 1112 ◽  
pp. 106-109
Author(s):  
Angga Virdian ◽  
Heldi Alfiadi ◽  
Yudi Darma

Westudy the structural characteristic of carbon based thin filmprepared by DC unbalanced magnetron sputtering technique on different buffer layer such as γ-Al2O3, SnO2, and Cu. Sputtering parameters of carbon thin film were maintained identical for each buffer layer. Fe-doped carbon pellet and Argon gas have been used as sputtering target and to generate the sputtering plasma, respectively. The roles of buffer layer for the quality of carbon-based thin film have been investigated by X-ray diffraction and Raman spectroscopy analysis. Raman spectra indicatethe formation of agoodquality carbon thin film with crystal-like structure on γ-Al2O3and Cu buffer layer, in contrast to the SnO2buffer layer case. Furthermore Raman spectra confirm thehoneycomb structure with fewer defects in γ-Al2O3indicating that it is more suitable buffer layer than the other. We argue that γ-Al2O3buffer layerprovide a good nucleation site and promote a better atomic arrangement for carbon atoms to form a few layergraphene-like structure. The atomic geometry of γ-Al2O3supports the hexagonal atomic configurationfor carbon atom inthe formation of a few layers graphene. This study mightgive a new approach for the carbon based deposition towards the devices application.


Author(s):  
Tae Hwan Jang ◽  
Tae Gyu Kim ◽  
Mun Ki Bae ◽  
Kyuseok Kim ◽  
Jaegu Choi

In this study, we developed a nanoscale emitter having a multi-layer thin-film nanostructure in an effort to maximize the field-emission effect with a low voltage difference. The emitter was a sapphire board on which tungsten–DLC multi-player thin film was deposited using PVD and CVD processes. This multi-layer thin-film emitter was examined in a high-vacuum X-ray tube system. Its field-emission efficiency according to the applied voltage was then analyzed.


Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


2013 ◽  
Vol 209 ◽  
pp. 111-115 ◽  
Author(s):  
Sandip V. Bhatt ◽  
M.P. Deshpande ◽  
Bindiya H. Soni ◽  
Nitya Garg ◽  
Sunil H. Chaki

Thin film deposition of PbS is conveniently carried out by chemical reactions of lead acetate with thiourea at room temperature. Energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), selected area electron diffraction patterns (SAED), UV-Vis-NIR spectrophotometer, Scanning Electron Microscopy (SEM), Atomic force microscopy (AFM), Photoluminescence (PL) and Raman spectroscopy techniques are used for characterizing thin films. EDAX spectra shows that no impurity is present and XRD pattern indicates face centered cubic structure of PbS thin films. The average crystallite size obtained using XRD is about 15nm calculated using Scherrer’s formula and that determined from Hall-Williamson plot was found to be 18nm. SAED patterns indicate that the deposited PbS thin films are polycrystalline in nature. Blue shift due to quantum confinement was seen from the UV-Vis-NIR absorption spectra of thin film in comparison with bulk PbS. The Photoluminescence spectra obtained for thin film with different excitation sources shows sharp emission peaks at 395nm and its intensity of photoluminescence increases with increasing the excitation wavelength. Raman spectroscopy of deposited thin film was used to study the optical phonon modes at an excitation wavelength of 488nm using (Ar+) laser beam.


Author(s):  
Monoj Kumar Singha ◽  
Vineet Rojwal

Thin film is used for sensing and electronic devices applications. Various techniques are used for thin film deposition. This chapter presents the Spray pyrolysis deposition technique used for the growth of thin films sensing and device material. Spray pyrolysis is an inexpensive method to grow good crystalline thin film compared to other thin film deposition techniques. The chapter gives an overview of the spray process used for thin film deposition. Basic setup for this process is explained. Parameters affecting the deposition process is explained, as are the various spray methods. Finally, some examples of spray pyrolysis in different applications like a gas sensor, UV photodetector, solar cell, photocatalysis, and supercapacitor are discussed.


1989 ◽  
Vol 165 ◽  
Author(s):  
Masataka Hirose ◽  
Seiichi Miyazaki

AbstractThe early stages of thin film deposition from the rf glow discharge of SiH4 or SiH4 + NH3 have been studied by analysing the structure of silicon based multiiayers consisting of hydrogenated amorphous silicon (a-Si:H, 10 – 200 A thick) and stoichiometric silicon nitride (a-Si3N4:H, 25 – 250 A) alternating layers. The x-ray diffraction, its rocking curve and x-ray interference of the multilayers have shown that the amorphous silicon/silicon nitride interface is atomically abrupt and the surfaces of the respective layers are atomically flat regardless of substrate materials. This indicates that the precursors impinging onto a substrate from the gas phase homogeneously cover the growing surface and the layer by layer growth proceeds on atomic scale. In the plasma deposition of the covalently bonded semiconductors and insulators, the island formation on a substrate surface at the beginning of the thin film growth is very unlikely.


1986 ◽  
Vol 90 ◽  
Author(s):  
W. J. Takei ◽  
N. J. Doyle

ABSTRACTX-ray diffraction techniques have proved invaluable in the characterization of infrared materials, particularly those prepared by thin film deposition techniques such as molecular beam epitaxy, MBE. The techniques are sufficiently sensitive and rapid to provide the information feedback required for efficient optimization of the growth process. They are nondestructive and permit the correlation with results on the same sample obtained by other characterization techniques such as those being described at this Symposium. Depending on the development status of the growth technology, the information to be acquired includes presence of twinning, quality, and type of epitaxial orientation, strains, and compositional variations. A critical issue in the application of these materials in detector arrays is the question of uniformity control, both laterally and in depth. The techniques to be described include not only modern x-ray topographic and multiple crystal diffractometric techniques but particularly for the early stages of growth process development, classical photographic ones such as the oscillation and Weissenberg methods. Examples of these various aspects are presented with emphasis placed on the characterization involved in MBE growth of HgCdTe films.


2011 ◽  
Vol 47 (14) ◽  
pp. 1569-1573 ◽  
Author(s):  
V. M. Raznomazov ◽  
V. O. Ponomarenko ◽  
N. M. Novikovskii ◽  
Yu. I. Velichko ◽  
A. P. Kovtun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document