scholarly journals Validation of Antibacterial Systems for Sustainable Ceramic Tiles

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1409
Author(s):  
Valeria La Torre ◽  
Elisa Rambaldi ◽  
Giulia Masi ◽  
Silvia Nici ◽  
Daniele Ghezzi ◽  
...  

Ceramic tiles are bacteriostatic materials; however, the COVID-19 emergency has pushed tile producers to improve surfaces’ antibacterial properties. The aim of this work was to validate a silver-based antibacterial treatment applied to porcelain stoneware tiles based on natural and waste materials, thus correlating surface functionalization to tile composition and relevant physical, microstructural, and textural parameters. The treatment was applied before firing, with and without a polymeric primer. Antibacterial activity tests, stain resistance tests, and contact angle measurements were carried out on fired tiles. Further investigations were made by SEM and optical profilometry in order to study the morphological–structural profile of tile surfaces. Results showed strong antibacterial activities for all the functionalized tiles, which were mainly correlated to the morphological and textural parameters of ceramic surfaces, as well as the presence of the polymeric primer.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3728
Author(s):  
Marta Chylińska ◽  
Halina Kaczmarek

Current demand for new protective materials ensuring sterility is systematically growing. The purpose of this work was the synthesis of the biocidal N-halamine hydantoin-containing chitosan (CS-CMH-Cl) and characterization of its properties. The functionalization of the chitosan by 5-hydantoinacetic acid substitution leads to obtaining the CS-CMH polymer, which was chlorinated in next step to transform N-H into N-Cl bonds. In this study, the possibility of forming two biocidal N-Cl bonds in hydantoin ring, grafted onto chitosan chains, was proved. The structure and stability of the prepared material was confirmed by spectroscopic (FTIR, NMR, colorimetric test) and microscopic analyses (SEM, AFM). Surface properties were investigated based on contact-angle measurements. In addition, the thermal and photochemical stability of the obtained samples were determined as functional features, determining the range of potential use. It was found that both modified chitosan polymers (CS-CMH and CS-CMH-Cl) were characterized by the smaller thermal stability and more hydrophilic and rougher surface than unmodified CS. Photooxidative degradation of the obtained materials was observed mainly on the sample surface. After irradiation, the surfaces became more hydrophilic—especially in the case of the CS-CMH-Cl—which is advantageous from the point of view of the antibacterial properties. Antibacterial tests against S. aureus and E. coli confirmed the antibacterial activities of received CS-CMH-Cl material.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4296
Author(s):  
Maurizio Villani ◽  
Federico Bertoglio ◽  
Elisa Restivo ◽  
Giovanna Bruni ◽  
Stefano Iervese ◽  
...  

In coatings technology, the possibility of introducing specific characteristics at the surface level allows for the manufacture of medical devices with efficient and prolonged antibacterial properties. This efficiency is often achieved by the use of a small amount of antibacterial molecules, which can fulfil their duty while limiting eventual releasing problems. The object of this work was the preparation and characterization of silver, titanium dioxide and chitosan polyurethane-based coatings. Coatings with the three antibacterials were prepared using different deposition techniques, using a brush or a bar coater automatic film applicator, and compared to solvent casted films prepared with the same components. For silver containing materials, an innovative strategy contemplating the use and preparation of silver nanoparticles in a single step-method was employed. This preparation was obtained starting from a silver precursor and using a single compound as the reducing agent and stabilizer. Ultraviolet-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, contact angle measurements and adhesion test experiments were used to characterize the prepared coatings. Promising antibacterial properties, measured via direct and indirect methods, were registered for all the silver-based materials.


2002 ◽  
Vol 727 ◽  
Author(s):  
Denys Usov ◽  
Manfred Stamm ◽  
Sergiy Minko ◽  
Christian Froeck ◽  
Andreas Scholl ◽  
...  

AbstractWe investigated the interplay between different mechanisms of the lateral and vertical segregation in the synthesized via “grafting from” approach symmetric A/B (where A and B are poly(styrene-co-2,3,4,5,6-pentafluorostyrene) and poly(methylmethacrylate), respectively) polymer brushes upon exposure to different solvents. We used X-ray photoemission electron spectroscopy and microscopy (X-PEEM), AFM, water contact angle measurements, and oxygen plasma etching to study morphology of the brushes. The ripple morphology after toluene (nonselective solvent) revealed elongated lamellar-like domains of A and B polymers alternating across the surface. The dimple-A morphology consisting of round clusters of the polymer A was observed after acetone (selective solvent for B). The top layer was enriched with the polymer B showing that the brush underwent both the lateral and vertical phase segregation. A qualitative agreement with predictions of SCF theory was found.


Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


2020 ◽  
Author(s):  
Michelina Soccio ◽  
Nadia Lotti ◽  
Andrea Munari ◽  
Esther Rebollar ◽  
Daniel E Martínez-Tong

<p>Nanostructured wrinkles were developed on fully bio-based poly(trimethylene furanoate) (PTF) films by using the technique of Laser Induced Periodic Surface Structures (LIPSS). We investigated the effect of irradiation time on wrinkle formation using an UV pulsed laser source, at a fluence of 8 mJ/cm2. It was found that the pulse range between 600 and 4800 pulses allowed formation of periodic nanometric ripples. The nanostructured surface was studied using a combined macro- and nanoscale approach. We evaluated possible physicochemical changes taking place on the polymer surface after irradiation by infrared spectroscopy, contact angle measurements and atomic force microscopy. The macroscopic physicochemical properties of PTF showed almost no changes after nanostructure formation, differently from the results previously found for the terephthalic counterparts, as poly(ethyleneterephthalate), PET, and poly(trimethyleneterephthalate), PTT. The surface mechanical properties of the nanostructured PTF were found to be improved, as evidenced by nanomechanical force spectroscopy measurements. In particular, an increased Young’s modulus and higher stiffness for the nanostructured sample were measured. <br></p>


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


2021 ◽  
Vol 9 (2) ◽  
pp. 450
Author(s):  
Maigualida Cuenca ◽  
María Carmen Sánchez ◽  
Pedro Diz ◽  
Lucía Martínez-Lamas ◽  
Maximiliano Álvarez ◽  
...  

The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1241
Author(s):  
Yuthana Phimolsiripol ◽  
Srirana Buadoktoom ◽  
Pimporn Leelapornpisid ◽  
Kittisak Jantanasakulwong ◽  
Phisit Seesuriyachan ◽  
...  

The effect of ultrasonication on the antioxidant and antibacterial properties of Ceylon spinach (Basella alba) extracts (CE) and the shelf life of chilled pork with CE were studied. The CE were ultrasonicated at different power levels (60–100%) for 10–40 min in an ultrasonic bath with the rise of antioxidant activities (p ≤ 0.05) proportional to the ultrasonication time. The additional investigation of antibacterial activities showed that the ultrasonicated extracts (100 mg/mL) could inhibit and inactivate Staphylococcus aureus and Escherichia coli with the optimal condition of 80% power for 40 min. For shelf-life testing, fresh pork treated with the ultrasonicated extracts at 100 and 120 mg/mL had lower values of thiobarbituric acid reactive substances (TBARS) than the control (without dipping). For food safety as measured by the total microbial count, the fresh pork dipped with 100–120 mg/mL CE extract could be kept at 0 °C for 7 days, 2 to 3 days longer than control meat at 0 and 4 °C, respectively. A sensory evaluation using a nine-point hedonic scale showed that fresh pork dipped with 100-mg/mL CE extracts was accepted by consumers. It is suggested that CE extracts can be applied in the food industry to enhance the quality and extend the shelf life of meat products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryama Hammi ◽  
Younes Ziat ◽  
Zakaryaa Zarhri ◽  
Charaf Laghlimi ◽  
Abdelaziz Moutcine

AbstractThe main purpose of this study is to elaborate anticorrosive coatings for the welded steel 316L, since this later is widely used in industrial field. Hence, within this work we have studied the electrochemical behaviour of different zones of the welded steel 316 in 1 M HCl media. The macrography study of the welded steel has revealed the different areas with a good contrast. We have stated three different zones, namely; melted zone (MZ), heat affected zone (HAZ) and base metal zone (BM). Impedance studies on welded steel 316L were conducted in 1 M HCl solution, coating of Epoxy/Alumina composite was applied on different zones, in order to reveal the anti-corrosion efficiency in each zone. Scanning electron microscopy (SEM) analysis was undertaken in order to check how far the used coating in such aggressive media protects the studied zones and these findings were assessed by water contact angle measurements. The choice of this coating is based on the cost and the safety. We concluded that the Epoxy/Alumina composite has a good protecting effect regarding welded steel in aggressive media.


Sign in / Sign up

Export Citation Format

Share Document