scholarly journals Dual Component Polymeric Epoxy-Polyaminoamide Based Zinc Phosphate Anticorrosive Formulation for 15CDV6 Steel

Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 463 ◽  
Author(s):  
Omar Dagdag ◽  
Ghadir Hanbali ◽  
Bayan Khalaf ◽  
Shehdeh Jodeh ◽  
Ahmed El Harfi ◽  
...  

The present research is focused on a formulation with two active components as an anticorrosive polymer coating for 15CDV6 steel. The dual component formulation (epoxy-zinc phosphate (ZP) coating) consists of a polymeric epoxy resin Bisphenol A diglycidyl ether (DGEBA) cured with a polyaminoamide as a first component and zinc phosphate (Zn3(PO4)2(H2O)4) (ZP) added in 5% by weight as a second component. The anticorrosive performance of the epoxy-ZP coating was evaluated against the standard coating, which consists of only one component, the cured polymeric epoxy resin. The two polymer coatings were evaluated by electrochemical impedance spectroscopy (EIS). The surface morphology was of the two polymer coatings were characterized by scanning electron microscopy (SEM). The coated samples of 15CDV6 steel were tested in a harsh environment of corrosive electrolytes (3 wt % NaCl solution). Under these conditions, a very high impedance value was obtained for 15CDV6 steel coated with the epoxy-ZP coating. Even after exposure for a long period of time (5856 h), the performance was still acceptable, indicating that the epoxy-ZP coating is an excellent barrier. The standard epoxy coating provided an adequate corrosion protection performance for a short period of time, then the performance started to decline. The results were confirmed by surface characterization, a cross-sectional image obtained by optical microscopy for an epoxy-ZP coating applied on 15CDV6 steel exposed for 5856 h to a salt spray test showed that the coating is homogeneous and adheres well to the surface of the steel. So, the coating with a dual component could have great potential in marine applications as anticorrosive for steel.

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.


Author(s):  
Stephan V. Kozhukharov ◽  
Christian Girginov

<p class="PaperAbstract"><span lang="EN-US">The possibility for combination between Anodized Aluminum Oxide (AAO) and Cerium Oxide Primer Layer (CeOPL) for elaboration of efficient protective coatings for AA2024-T3 aircraft alloy is proposed in the present research. The combined AAO/CeOPL coating characterizations include Electrochemical Impedance Spectroscopy (EIS) combined with Linear Voltammetry (LVA), for extended times (until 2520 hours) to a model corrosive medium (3.5% NaCl). Topographical and cross-sectional (SEM and EDX) observations were performed in order to determine the AAO/CeOPL film thickness and composition. The AAO/CeOPL layer durability tests were confirmed by standard Neutral Salt Spray (NSS). The data analysis from all the used measurement methods has undoubtedly shown that the presence of AAO film significantly improves the cerium oxide primer layer (CeOPL) protective properties and performance. </span></p>


2018 ◽  
Vol 47 (4) ◽  
pp. 281-289 ◽  
Author(s):  
Kunal Wazarkar ◽  
Anagha S. Sabnis

Purpose The purpose of this study is to synthesize structurally different phenalkamines based on cardanol, a renewable material obtained from cashew nut shell liquid, and to evaluate their effect on performance properties of the coatings. Design/methodology/approach For this purpose, the Mannich reaction between cardanol, formaldehyde and various diamines such as diaminodiphenyl methane (DDM), hexamethylene diamine, Jeffamine D400 and Jeffamine T403 were carried out to produce novel phenalkamines. Resultant phenalkamines were used as curing agents for commercial DGEBPA epoxy resin and were evaluated for performance properties. Findings The mechanical, optical, chemical, thermal and anticorrosive properties were evaluated and compared with those of commercial phenalkamine AG141. It was observed that anticorrosive properties evaluated using a salt spray test and electrochemical impedance spectroscopy revealed significant improvement in anticorrosive performance of coatings cured with synthesized phenalkamines based on DDM and T403 as compared to the coatings based on commercial phenalkamine AG141. Research limitations/implications To obtain optimum performance properties of the coatings, a combination of phenalkamines can be used. Practical implications Curing time and gel times of all the phenalkamines can be further studied under wet and humid conditions. In addition, the variation in coating properties under humid conditions can be investigated. Originality/value In this study, newer phenalkamines were synthesized and used as curing agents for epoxy coatings. So far, there have been no reports indicating the synthesis and application of phenalkamines based on polyetheramines, namely, Jeffamine D400 and Jeffamine T403, in coating applications.


2018 ◽  
Vol 36 (3) ◽  
pp. 305-322 ◽  
Author(s):  
Sol Roselli ◽  
Cecilia Deyá ◽  
Mariana Revuelta ◽  
Alejandro R. Di Sarli ◽  
Roberto Romagnoli

AbstractThe aim of this paper was to evaluate the performance of two different modified zeolitic minerals as anticorrosion pigments in order to reduce or eliminate zinc phosphate in paints. In the first stage, the selected minerals were characterized and modified with cerium ions to obtain the anticorrosion pigments. Their inhibitive properties were evaluated by means of electrochemical techniques (corrosion potential measurements and polarization curves) employing a steel electrode immersed in the pigments suspensions. In the second stage, solvent-borne paints, with 30% by volume of the anticorrosion pigment, with respect of the total pigment content, were formulated. The performance of the resulting paints was assessed by accelerated (salt spray and humidity chambers) and electrochemical tests (corrosion potential measurements and electrochemical impedance spectroscopy) and compared with that of a control paint with 30% by volume of zinc phosphate. Results obtained in this research suggested that zeolites can be used as carriers for passivating ions in the manufacture of anticorrosion paints with at least reduced zinc phosphate content.


2014 ◽  
Vol 938 ◽  
pp. 269-274 ◽  
Author(s):  
P. Saravanan ◽  
D. Duraibabu ◽  
S. Ananda Kumar

Alternative coatings should be as effective as conventional paints but with lower toxicity. In the present study, a commercially available epoxy resin modified with non functionalized nanozinc oxide (nZnO) was examined to get information on its antifouling and anti-corrosive properties. Epoxy nanohybrid coating was synthesized using nZnO (in the amount of 0wt%, 1wt%, 3wt%, 5wt%, 7wt% and 10wt%) and diglycidyl ether of bisphenol A (DGEBA) type of epoxy resin. The curing behavior of these materials was ascertained from FT-IR spectral studies. The anti-corrosive properties of the nanohybrid were investigated using salt spray and electro chemical polarization studies. The surface morphology images were taken by SEM analysis. This study indicates that nZnO particles were dispersed homogenously through the polymer matrix. The nZnO incorporated coating was found to exhibit enhanced anticorrosive performance. Approximately 50% reduction in fouling attachment was achieved with coatings containing 3wt% of nZnO.


Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Lingli Xu ◽  
Zheng Chen ◽  
Fei Huang ◽  
Yinze Zuo ◽  
Xingling Shi ◽  
...  

The development of waterborne coating is essentially important for environmental protection, and cross-linking agent is of great significance for ensuring corrosion resistance of the coating. In this work, tetrabutyl titanate was modified by ethylene glycol and tris(2-hydroxyethyl) amine and used for the solidification of waterborne acrylic-epoxy resin. Fourier-transform infrared spectroscopy (FTIR) analysis revealed that the agent reacted with OH groups first to cross-link the resin preliminarily, and then, when the amount of agent was further increased, the amino groups opened epoxide rings resulting in a secondary cross-link. Field emission scanning electron microscope (FESEM) observation and electrochemical impedance spectroscopy (EIS) test found that, when the cross-linking agent was used at 6%, the coating remains intact and kept an impedance of as high as 108Ωcm2 even after being immersed in NaCl solution for 30 days. Copper-accelerated acetic acid-salt spray (CASS) test confirmed that the coating containing 6% cross-linking agent provided the best protection for the carbon steel substrate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Siyi Yin ◽  
Haiyan Yang ◽  
Yinghao Dong ◽  
Chengju Qu ◽  
Jinghui Liu ◽  
...  

AbstractPolymer coatings are commonly used to protect carbon steels from corrosion but they are susceptible to weathering and many of them have environmental concerns. Therefore, we studied the possibility of an environmentally favorable inorganic magnesium phosphate cement (MPC) coating for protecting mild steel. A formulation suitable for coating steel was developed by compositional modification [i.e., incremental replacement of dead-burned magnesia (MgO) with magnesium hydroxide (Mg(OH)2)] to a road-repair MPC. This modification yielded an acceptable working time and prevented pore formation at the coating-steel interface. Corrosion monitoring by linear polarization and electrochemical impedance spectroscopy for 14 days found that, the MPC coating substantially increased the linear polarization resistance (Rp) [e.g., day 1: (8.2 ± 1.7) × 103 (nadir value) vs. 495 ± 55 Ω cm−2] and charge transfer resistance (Rct) (e.g., day 1: 9.3 × 103 vs. 3.8 × 102 Ω cm−2). The coated steel underwent neutral sodium chloride (NaCl) salt spray for 2400 h without visible rusting. Immersion for 24 h in liquids simulating the pore fluid indicated that, passivation by the excess MgO in the coating was a major contributor to its anti-corrosive property. Tafel polarization in the liquids found that, corrosion current density (Icorr) followed the rank: 3.5% NaCl solution (6.0 µA cm−2) > 3.5% NaCl solution containing MgO (3.6 µA cm−2) > 3.5% NaCl solution containing fragmented MPC (1.7 µA cm−2), suggesting that a physical barrier effect and dissolved phosphate ions improved its protection. This study shows that, MPC coating is a promising durable and environmentally favorable anti-corrosive material for protecting steel structures in some applications.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 337
Author(s):  
Ewa Wierzbicka ◽  
Marta Mohedano ◽  
Endzhe Matykina ◽  
Raul Arrabal

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulations demand for an expedient discovery of a Cr(VI)-free alternative corrosion protection for light alloys even though the green alternatives might never be as cheap as current harmful technologies. In the present work, flash- plasma electrolytic oxidation coatings (FPEO) with the process duration < 90 s are developed on AZ31B alloy in varied mixtures of silicate-, phosphate-, aluminate-, and fluoride-based alkaline electrolytes implementing current density and voltage limits. The overall evaluation of the coatings’ anticorrosion performance (electrochemical impedance spectroscopy (EIS), neutral salt spray test (NSST), paintability) shows that from nine optimized FPEO recipes, two (based on phosphate, fluoride, and aluminate or silicate mixtures) are found to be an adequate substitute for commercially used Cr(VI)-based conversion coating (CCC). The FPEO coatings with the best corrosion resistance consume a very low amount of energy (~1 kW h m−2 µm−1). It is also found that the lower the energy consumption of the FPEO process, the better the corrosion resistance of the resultant coating. The superb corrosion protection and a solid environmentally friendly outlook of PEO-based corrosion protection technology may facilitate the economic justification for industrial end-users of the current-consuming process as a replacement of the electroless CCC process.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1929
Author(s):  
Alexander Rodríguez ◽  
Francisco Burgos-Flórez ◽  
José D. Posada ◽  
Eliana Cervera ◽  
Valtencir Zucolotto ◽  
...  

Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10–1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 930
Author(s):  
Juan Jesús Alba-Galvín ◽  
Leandro González-Rovira ◽  
Francisco Javier Botana ◽  
Maria Lekka ◽  
Francesco Andreatta ◽  
...  

The selection of appropriate surface pretreatments is one of the pending issues for the industrial application of cerium-based chemical conversion coatings (CeCC) as an alternative for toxic chromate conversion coating (CrCC). A two-step surface pretreatment based on commercial products has been successfully used here to obtain CeCC on AA2024-T3 and AA7075-T6. Specimens processed for 1 to 15 min in solutions containing CeCl3 and H2O2 have been studied by scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDX), glow discharge optical emission spectroscopy (GDOES), potentiodynamic linear polarization (LP), electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. SEM-EDX showed that CeCC was firstly observed as deposits, followed by a general coverage of the surface with the formation of cracks where the coating was getting thicker. GDOES confirmed an increase of the CeCC thickness as the deposition proceed, the formation of CeCC over 7075 being faster than over 2024. There was a Ce-rich layer in both alloys and an aluminum oxide/hydroxide layer on 7075 between the upper Ce-rich layer and the aluminum matrix. According to LP and EIS, CeCC in all samples offered cathodic protection and comparable degradation in chloride-containing media. Finally, the NSS test corroborated the anti-corrosion properties of the CeCC obtained after the commercial pretreatments employed.


Sign in / Sign up

Export Citation Format

Share Document