scholarly journals Stable and Efficient Photoinduced Charge Transfer of MnFe2O4/Polyaniline Photoelectrode in Highly Acidic Solution

2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Mohammed Alsultan ◽  
Shaymaa Al-Rubaye ◽  
Amar Al-Keisy ◽  
Gerhard F. Swiegers ◽  
Intisar Ghanim Taha

Tailoring conductive polymers with inorganic photocatalysts, which provide photoinduced electron-hole generation, have significantly enhanced composites leading to excellent photoelectrodes. In this work, MnFe2O4 nanoparticles prepared by a hydrothermal method were combined with polyaniline to prepare mixed (hybrid) slurries, which were cast onto flexible FTO to prepare photoelectrodes. The resulting photoelectrodes were characterized by XRD, FESEM, HRTEM and UV-VIS. The photoelectrochemical performance was investigated by linear sweep voltammetry and chronoamperometry. The photocurrent achieved by MnFe2O4/Polyaniline was 400 μA/cm2 at 0.8 V vs. Ag/AgCl in Na2SO4 (pH = 2) at 100 mW/cm2, while polyaniline alone achieved only 25 μA/cm2 under the same conditions. The best MnFe2O4/Polyaniline displayed an incident photon-to-current conversion efficiency (IPCE) and applied bias photon-to-current efficiency (ABPE) of 60% at 405 nm wavelength, and 0.17% at 0.8 V vs. Ag/AgCl, respectively. High and stable photoelectrochemical performance was achieved for more than 900 s in an acidic environment.

1983 ◽  
Vol 48 (2) ◽  
pp. 477-483 ◽  
Author(s):  
Jan Lasovský ◽  
František Grambal

The electrooxidation of luminol in alkaline solutions in the presence of cetyltrimethylammonium bromide (I) was studied by linear sweep voltammetry on fixed and vibrating platinum electrodes. The presence of I in low concentrations (below the critical micellar concentration) brings about aggregation of the luminol, which is manifested by an increase in the anodic peak height and its shift towards lower potentials. In micellar solutions the peak height decreases owing to the slower diffusion of the bulkier micelles, the shift to lower potentials being preserved. The light-voltage curves correspond with the voltammetric curves, exhibiting identical shifts of the peak potentials in dependence on the concentration of the surfactant.


Beverages ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Jéremie Wirth ◽  
Davide Slaghenaufi ◽  
Stéphane Vidal ◽  
Maurizio Ugliano

Oak alternatives (OAs) such as chips, granulates or staves, are becoming increasingly used in the wine industry. Although they are mostly considered for their contribution to wine aroma, they are also a source of phenolic compounds to be released in the wine, in particular ellagitannins contributing to wine mouthfeel and antioxidant characteristics. In the present study, we explore the potential for a rapid analytical method based on linear sweep voltammetry (LSV) combined with disposable sensors to provide a rapid measure of the oxidizable compounds present in different OAs, as well as their characterization. Strong correlations were found between the tannin content of different OAs and the total current measures during LSV analysis, allowing a rapid quantification of the oxidizable compounds present, mostly ellagitannin. Application of derivatization to raw voltammograms allowed extraction of a number of features that can be used for classification purposes, in particular with respect to OAs types (chips or staves) and degree of toasting.


1984 ◽  
Vol 62 (3) ◽  
pp. 596-600 ◽  
Author(s):  
R. G. Barradas ◽  
D. S. Nadezhdin

The cathodic reduction of the lead monoxide layer formed on lead in 30% aqueous H2SO4 under anodic oxidation at 0.6 V (vs. Hg/HgSO4 reference electrode) was investigated by linear sweep voltammetry, potential step and admittance measurements. The experimental data were analyzed respectively in terms of thin-layer electrochemistry, electrocrystallisation, and changes of resistance of the PbO layer under reduction. The results seem to be best interpreted from the theory of three-dimensional electrocrystallisation as PbO is reduced to Pb. At sub-zero temperatures the PbO peak observed on our voltammograms and potentiostatic current time transients reveals the splitting of the curves into two peaks, which may be a result of reduction of the same material but of different phases, namely, orthorhombic and tetragonal PbO.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 454 ◽  
Author(s):  
Arman Dastpak ◽  
Kirsi Yliniemi ◽  
Mariana de Oliveira Monteiro ◽  
Sarah Höhn ◽  
Sannakaisa Virtanen ◽  
...  

In this study, a waste of biorefinery—lignin—is investigated as an anticorrosion coating on stainless steel. Corrosion behavior of two lignin types (hardwood beech and softwood spruce) was studied by electrochemical measurements (linear sweep voltammetry, open circuit potential, potentiostatic polarization, cyclic potentiodynamic polarization, and electrochemical impedance measurements) during exposure to simulated body fluid (SBF) or phosphate buffer (PBS). Results from linear sweep voltammetry of lignin-coated samples, in particular, demonstrated a reduction in corrosion current density between 1 and 3 orders of magnitude cf. blank stainless steel. Furthermore, results from cross cut adhesion tests on lignin-coated samples demonstrated that the best possible adhesion (grade 0) of ISO 2409 standard was achieved for the investigated novel coatings. Such findings suggest that lignin materials could transform the field of organic coatings towards more sustainable alternatives by replacing non-renewable polymer coatings.


Sign in / Sign up

Export Citation Format

Share Document