scholarly journals The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 990
Author(s):  
Alfonso M. Gañán-Calvo ◽  
Henry N. Chapman ◽  
Michael Heymann ◽  
Max O. Wiedorn ◽  
Juraj Knoska ◽  
...  

One of the most successful ways to introduce samples in Serial Femtosecond Crystallography has been the use of microscopic capillary liquid jets produced by gas flow focusing, whose length-to-diameter ratio and velocity are essential to fulfill the requirements of the high pulse rates of current XFELs. In this work, we demonstrate the validity of a classical scaling law with two universal constants to calculate that length as a function of the liquid properties and operating conditions. These constants are determined by fitting the scaling law to a large set of experimental and numerical measurements, including previously published data. Both the experimental and numerical jet lengths conform remarkably well to the proposed scaling law. We show that, while a capillary jet is a globally unstable system to linear perturbations above a critical length, its actual and shorter long-term average intact length is determined by the nonlinear perturbations coming from the jet breakup itself. Therefore, this length is determined solely by the properties of the liquid, the average velocity of the liquid and the flow rate expelled. This confirms the very early observations from Smith and Moss 1917, Proc R Soc Lond A Math Phys Eng, 93, 373, to McCarthy and Molloy 1974, Chem Eng J, 7, 1, among others, while it contrasts with the classical conception of temporal stability that attributes the natural breakup length to the jet birth conditions in the ejector or small interactions with the environment.

Author(s):  
Jens Kamplade ◽  
Tobias Mack ◽  
Andre Küsters ◽  
Peter Walzel

The breakup process of threads from laminar operating rotary atomizer (LamRot) is in the scope of this investigation. A similarity trail is used to investigate the influence of the thread deformation within a cross-wind flow on the thread breakup process. The threads emerge from laminar open channel flow while the liquid viscosity, the flow rate, the pipe inclination towards the gravity as well as the cross-wind velocity is varied. The breakup length and drop size distribution are analyzed by a back-light photography setup. The results thus obtained are compared with results of previous examination by Schröder [1] and Mescher [2]. It is found that the breakup length decreases and that the drop size grows with rising cross-wind intensity, while the width of the drop size distribution increases. At the same operating conditions, the breakup length for laminar open channel flow is smaller compared to completely filled capillaries. In contrast to this observation, the drop size distribution remains nearly unchanged. The critical velocity for the transition from axisymmetric to wind-induced thread breakup was found to be smaller than for completely filled capillaries.


2019 ◽  
Author(s):  
Ryther Anderson ◽  
Achay Biong ◽  
Diego Gómez-Gualdrón

<div>Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of thousands already synthesized), molecular simulation, such as grand canonical Monte Carlo (GCMC), has frequently been used to rapidly evaluate the adsorption performance of a large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In many instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the need for alternative screening methods, such as machine learning, to precede molecular simulation efforts. In this study, as a proof of concept, we trained a neural network as the first example of a machine learning model capable of predicting full adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our neural network only on alchemical species, represented only by their geometry and force field parameters, and used this neural network to predict the loadings of real adsorbates. We focused on predicting room temperature adsorption of small (one- and two-atom) molecules relevant to chemical separations. Namely, argon, krypton, xenon, methane, ethane, and nitrogen. However, we also observed surprisingly promising predictions for more complex molecules, whose properties are outside the range spanned by the alchemical adsorbates. Prediction accuracies suitable for large-scale screening were achieved using simple MOF (e.g. geometric properties and chemical moieties), and adsorbate (e.g. forcefield parameters and geometry) descriptors. Our results illustrate a new philosophy of training that opens the path towards development of machine learning models that can predict the adsorption loading of any new adsorbate at any new operating conditions in any new MOF.</div>


2016 ◽  
Vol 73 (9) ◽  
pp. 2311-2321 ◽  
Author(s):  
Ian R. Bradbury ◽  
Lorraine C. Hamilton ◽  
Timothy F. Sheehan ◽  
Gerald Chaput ◽  
Martha J. Robertson ◽  
...  

Abstract The West Greenland Atlantic Salmon (Salmo salar) fishery represents the largest remaining mixed-stock fishery for Atlantic Salmon in the Northwest Atlantic and targets multi-sea-winter (MSW) salmon from throughout North America and Europe. We evaluated stock composition of salmon harvested in the waters off West Greenland (n = 5684 individuals) using genetic mixture analysis and individual assignment to inform conservation of North American populations, many of which are failing to meet management targets. Regional contributions to this fishery were estimated using 2169 individuals sampled throughout the fishery between 2011 and 2014. Of these, 22% were identified as European in origin. Major North American contributions were detected from Labrador (∼20%), the Southern Gulf/Cape Breton (29%), and the Gaspe Peninsula (29%). Minor contributions (∼5%) were detected from Newfoundland, Ungava, and Quebec regions. Region-specific catches were extrapolated using estimates of composition and fishery catch logs and harvests ranged from 300 to 600 and 2000 to 3000 individuals for minor and major constituents, respectively. To evaluate the temporal stability of the observed fishery composition, we extended the temporal coverage through the inclusion of previously published data (1995–2006, n = 3095) and data from archived scales (1968–1998, n = 420). Examination of the complete time-series (47 years) suggests relative stability in stock proportions since the late 1980s. Genetic estimates of stock composition were significantly associated with model-based estimates of returning MSW salmon (individual years r = 0.69, and overall mean r = 0.96). This work demonstrates that the analysis of both contemporary and archived samples in a mixed-stock context can disentangle levels of regional exploitation and directly inform assessment and conservation of Atlantic Salmon in the West Greenland interceptory Atlantic Salmon fishery.


Author(s):  
Takashi Wada ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
Yuta Uchiyama ◽  
Hideki Nariai ◽  
...  

For the safety design of the Fast Breeder Reactor (FBR), the Post Accident Heat Removal (PAHR) is required when a hypothetical Core Disruptive Accident (CDA) occurs. In the PAHR, it is strongly required that the molten core material can be cooled down and solidified by the sodium coolant in the reactor vessel. There is high possibility for molten material to be ejected as a liquid jet into sodium coolant in the reactor vessel. In order to estimate whether the molten material jet is completely solidified by sodium coolant or not, it is necessary to understand the interaction between molten core material and coolant such as jet breakup and fragmentation behavior in coolant. The jet breakup behavior is the phenomenon that the front of molten material breaks up in coolant. To clarify the mechanism of jet breakup and fragmentation during the CDA for the FBR, it is necessary to understand the correlation between jet breakup lengths and size distribution of fragments when molten material jet interacting with coolant. The objective of the present study is to clarify the dominant factor of the jet breakup length and the size distribution of fragments experimentally. Molten jet of U-alloy 138 is injected into water as simulated core material and coolant by free-fall. The density ratio of core material and coolant is almost same as that of the real FBR system. The jet breakup behavior as interaction of molten material with coolant is observed with high speed video camera. Front velocity of the molten material jet is estimated by using the image processing technique. It suddenly decreases when the jet fall into the coolant. The jet breakup length estimated from observed images is compared with the breakup theories to understand the effect of experimental parameters for the jet breakup length. The solidified fragments are gathered and classified in size, and the mass in each size is measured. Median diameter is obtained from the mass distribution of the fragments. In comparison with interfacial instabilities, the median diameter of fragments shows the independent of relative velocity. The jet breakup lengths and median diameters compared with existing theories is discussed.


2021 ◽  
pp. 1-18
Author(s):  
Gisela Vanegas ◽  
John Nejedlik ◽  
Pascale Neff ◽  
Torsten Clemens

Summary Forecasting production from hydrocarbon fields is challenging because of the large number of uncertain model parameters and the multitude of observed data that are measured. The large number of model parameters leads to uncertainty in the production forecast from hydrocarbon fields. Changing operating conditions [e.g., implementation of improved oil recovery or enhanced oil recovery (EOR)] results in model parameters becoming sensitive in the forecast that were not sensitive during the production history. Hence, simulation approaches need to be able to address uncertainty in model parameters as well as conditioning numerical models to a multitude of different observed data. Sampling from distributions of various geological and dynamic parameters allows for the generation of an ensemble of numerical models that could be falsified using principal-component analysis (PCA) for different observed data. If the numerical models are not falsified, machine-learning (ML) approaches can be used to generate a large set of parameter combinations that can be conditioned to the different observed data. The data conditioning is followed by a final step ensuring that parameter interactions are covered. The methodology was applied to a sandstone oil reservoir with more than 70 years of production history containing dozens of wells. The resulting ensemble of numerical models is conditioned to all observed data. Furthermore, the resulting posterior-model parameter distributions are only modified from the prior-model parameter distributions if the observed data are informative for the model parameters. Hence, changes in operating conditions can be forecast under uncertainty, which is essential if nonsensitive parameters in the history are sensitive in the forecast.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


Author(s):  
R.A. Gasumov ◽  
◽  
E.R. Gasumov ◽  

The article discusses the modes of movement of gas-liquid flows in relation to the operating conditions of waterlogged gas wells at a late stage of field development. Algorithms have been developed for calculating gas well operation modes based on experimental work under conditions that reproduce the actual operating conditions of flooded wells of Cenomanian gas deposits. The concept of calculating the technological mode of operation of gas wells with a single-row elevator according to the critical velocity of the upward flow is considered based on the study of the equilibrium conditions of two oppositely directed forces: the gravity of water drops directed downward and the lifting force moving water drops with a gas flow directed upward. A calculation was made according to the method of the averaged physical parameters of formation water and natural gas in the conditions of flooded Cenomanian gas wells in Western Siberia. The results of a study of the dependence of the critical flow rate of Cenomanian wells on bottomhole pressure and diameter of elevator pipes are presented.


Author(s):  
M. Vardelle ◽  
P. Fauchais ◽  
A. Vardelle ◽  
A.C. Léger

Abstract A study of the flattening and cooling of particles plasma-sprayed on a substrate is presented. The characteristic parameters of the splats are linked to the parameters of the impacting particles by using an experimental device consisting of a phase Doppler particle analyzer and a high-speed pyrometer. However, during the long experiments required to get reliable correlations, it was observed that variations in plasma spray operating conditions may alter the particles behavior in the plasma jet. Therefore, a simple and easy-to-use system was developed to control in real time the spray jet. In this paper, the effect of carrier gas flow rate, arc current and powder mass flow rate is investigated. The results on zirconia and alumina powders show the capability of the technique to sense the particle spray position and width.


2019 ◽  
Vol 41 (5) ◽  
pp. 820-820
Author(s):  
Pongayi Ponnusamy Selvi and Rajoo Baskar Pongayi Ponnusamy Selvi and Rajoo Baskar

The acidic gas, Carbon dioxide (CO2) absorption in aqueous ammonia solvent was carried as an example for industrial gaseous treatment. The packed column was provided with a novel structured BX-DX packing material. The overall mass transfer coefficient was calculated from the absorption efficiency of the various runs. Due to the high solubility of CO2, mass transfer was shown to be mainly controlled by gas side transfer rates. The effects of different operating parameters on KGav including CO2 partial pressure, total gas flow rates, volume flow rate of aqueous ammonia solution, aqueous ammonia concentration, and reaction temperature were investigated. For a particular system and operating conditions structured packing provides higher mass transfer coefficient than that of commercial random packing.


Sign in / Sign up

Export Citation Format

Share Document